{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Categories.Category
open import Categories.Functor.Core
open import Categories.FreeObjects.Free
module Object.FreeObject where
private
variable
o ℓ e o' ℓ' e' : Level
record IsFreeObject {C : Category o ℓ e} {D : Category o' ℓ' e'} (U : Functor D C) (X : Category.Obj C) (FX : Category.Obj D) (η : C [ X , Functor.₀ U FX ]) : Set (suc (e ⊔ e' ⊔ o ⊔ ℓ ⊔ o' ⊔ ℓ')) where
private
module C = Category C using (Obj; id; identityʳ; identityˡ; _⇒_; _∘_; equiv; module Equiv)
module D = Category D using (Obj; _⇒_; _∘_; equiv)
module U = Functor U using (₀; ₁)
field
_* : ∀ {A : D.Obj} → C [ X , U.₀ A ] → D [ FX , A ]
*-lift : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) → C [ (U.₁ (f *) C.∘ η) ≈ f ]
*-uniq : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) (g : D [ FX , A ]) → C [ (U.₁ g) C.∘ η ≈ f ] → D [ g ≈ f * ]
IsFreeObject⇒FreeObject : ∀ {C : Category o ℓ e} {D : Category o' ℓ' e'} (U : Functor D C) (X : Category.Obj C) (FX : Category.Obj D) (η : C [ X , Functor.₀ U FX ]) → IsFreeObject U X FX η → FreeObject U X
IsFreeObject⇒FreeObject U X FX η isFO = record
{ FX = FX
; η = η
; _* = _*
; *-lift = *-lift
; *-uniq = *-uniq
}
where open IsFreeObject isFO