open import Categories.Category.Core
open import Categories.Category.Distributive using (Distributive)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
open import Categories.Category.Cartesian.Monoidal
open import Categories.Category.Cartesian.SymmetricMonoidal using () renaming (symmetric to symm)
open import Categories.Category.Monoidal using (Monoidal)
open import Categories.Category.Monoidal.Symmetric using (Symmetric)
open import Categories.Category.Monoidal.Braided using (Braided)
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
import Categories.Morphism.Properties as MP
module Category.Distributive.Helper {o ℓ e} {C : Category o ℓ e} (distributive : Distributive C) where
open Category C
open Distributive distributive public
open import Categories.Category.Distributive.Properties distributive public
open Cocartesian cocartesian renaming (+-unique to []-unique) public
open Cartesian cartesian public
open BinaryProducts products renaming (η to ⁂-η; g-η to ⁂-g-η; unique to ⟨⟩-unique; unique′ to ⟨⟩-unique′) public
open CartesianMonoidal cartesian using (⊤×A≅A; A×⊤≅A) public
∇ : ∀ {X} → X + X ⇒ X
∇ = [ id , id ]
module Bundles where
cartesianCategory : CartesianCategory o ℓ e
cartesianCategory = record { U = C ; cartesian = cartesian }
monoidal : Monoidal C
monoidal = CartesianMonoidal.monoidal cartesian
symmetric : Symmetric monoidal
symmetric = symm C cartesian
braided : Braided monoidal
braided = Symmetric.braided symmetric
open M C
open MR C
open MP C
open HomReasoning
open Equiv
distributeˡ⁻¹-natural-id : ∀ {X Y U V} {f : X ⇒ Y} → ((f ⁂ id {U}) +₁ (f ⁂ id {V})) ∘ distributeˡ⁻¹ ≈ distributeˡ⁻¹ ∘ (f ⁂ id)
distributeˡ⁻¹-natural-id {X} {Y} {U} {V} {f} = distributeˡ⁻¹-natural f id id ○ ∘-resp-≈ʳ (⁂-cong₂ refl ([]-unique id-comm-sym id-comm-sym))
distribute₄ : ∀ {A B C D} → (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ {A + B} {C} {D} ≈ [ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹
distribute₄ = Iso⇒Epi (IsIso.iso isIsoʳ) ((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) (begin
(((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ distributeʳ) ≈⟨ ∘[] ⟩
[ (((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ (i₁ ⁂ id)) , (((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ (i₂ ⁂ id)) ] ≈⟨ []-cong₂ (pullʳ ((refl⟩∘⟨ (⁂-cong₂ refl (sym ([]-unique id-comm-sym id-comm-sym)))) ○ sym (distributeˡ⁻¹-natural i₁ id id))) (pullʳ (((refl⟩∘⟨ (⁂-cong₂ refl (sym ([]-unique id-comm-sym id-comm-sym)))) ○ sym (distributeˡ⁻¹-natural i₂ id id)))) ⟩
[ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ ((i₁ ⁂ id) +₁ (i₁ ⁂ id)) ∘ distributeˡ⁻¹ , (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ ((i₂ ⁂ id) +₁ (i₂ ⁂ id)) ∘ distributeˡ⁻¹ ] ≈⟨ []-cong₂ (pullˡ (+₁∘+₁ ○ +₁-cong₂ distributeʳ⁻¹-i₁ distributeʳ⁻¹-i₁)) (pullˡ (+₁∘+₁ ○ +₁-cong₂ distributeʳ⁻¹-i₂ distributeʳ⁻¹-i₂)) ⟩
[ (i₁ +₁ i₁) ∘ distributeˡ⁻¹ , (i₂ +₁ i₂) ∘ distributeˡ⁻¹ ] ≈˘⟨ []∘+₁ ⟩
([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹)) ≈˘⟨ pullʳ (cancelʳ (IsIso.isoˡ isIsoʳ)) ⟩
(([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) ∘ distributeʳ) ∎)
distributeˡ⁻¹-assoc : ∀ {A B C D : Obj} → distributeˡ⁻¹ ∘ (id ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc ≈ (_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹ {A × B} {C} {D}
distributeˡ⁻¹-assoc {A} {B} {U} {D} = Iso⇒Epi (IsIso.iso isIsoˡ) (distributeˡ⁻¹ ∘ (id ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ((_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹) (begin
(distributeˡ⁻¹ ∘ (id ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ [ id ⁂ i₁ , id ⁂ i₂ ] ≈⟨ ∘[] ⟩
[ (distributeˡ⁻¹ ∘ (id ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ (id ⁂ i₁) , (distributeˡ⁻¹ ∘ (id ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ (id ⁂ i₂) ] ≈⟨ []-cong₂ (pullʳ (pullʳ ⟨⟩∘)) (pullʳ (pullʳ ⟨⟩∘)) ⟩
[ distributeˡ⁻¹ ∘ (id ⁂ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₁) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ (id ⁂ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₂) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩) ⟩
[ distributeˡ⁻¹ ∘ ⟨ id ∘ (π₁ ∘ π₁) ∘ (id ⁂ i₁) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ ⟨ id ∘ (π₁ ∘ π₁) ∘ (id ⁂ i₂) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl)) (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl)) ⟩
[ distributeˡ⁻¹ ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₁) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₂) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘))) (refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘)) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ id ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ (π₂ ∘ π₁) ∘ (id ⁂ i₁) , π₂ ∘ (id ⁂ i₁) ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ id ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ (π₂ ∘ π₁) ∘ (id ⁂ i₂) , π₂ ∘ (id ⁂ i₂) ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))) (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ id ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ id ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl)) (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl)) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ id ∘ π₂ ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ id ∘ π₂ ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ] ≈˘⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩))) (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩))) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ (id ⁂ i₁) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ (id ⁂ i₂) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ distributeˡ⁻¹-i₁))) (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ distributeˡ⁻¹-i₂))) ⟩
[ distributeˡ⁻¹ ∘ ⟨ id ∘ π₁ ∘ π₁ , i₁ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ id ∘ π₁ ∘ π₁ , i₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈˘⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩) ⟩
[ distributeˡ⁻¹ ∘ (id ⁂ i₁) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ (id ⁂ i₂) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (pullˡ distributeˡ⁻¹-i₁) (pullˡ distributeˡ⁻¹-i₂) ⟩
(_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ≈˘⟨ cancelʳ (IsIso.isoˡ isIsoˡ) ⟩
((_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹) ∘ distributeˡ ∎)
[⟨⟩]≈⟨[]⟩ : ∀ {A B C D} (f : A ⇒ B) (g : A ⇒ C) (h : D ⇒ B) (i : D ⇒ C) → [ ⟨ f , g ⟩ , ⟨ h , i ⟩ ] ≈ ⟨ [ f , h ] , [ g , i ] ⟩
[⟨⟩]≈⟨[]⟩ f g h i = []-unique (⟨⟩∘ ○ ⟨⟩-cong₂ inject₁ inject₁) (⟨⟩∘ ○ ⟨⟩-cong₂ inject₂ inject₂)