open import Level
open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.CartesianClosed using (CartesianClosed)
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Object.Terminal using (Terminal)
open import Categories.Object.Product using (Product)
open import Categories.Category.Core
import Categories.Morphism.Reasoning as MR
module Category.Construction.ElgotAlgebras.Products {o ℓ e} {C : Category o ℓ e} (cocartesian : Cocartesian C) (cartesian : Cartesian C) where
open Category C
open Equiv
open HomReasoning
open MR C
open import Category.Construction.ElgotAlgebras cocartesian
open Cartesian cartesian
open Cocartesian cocartesian
open import Algebra.Elgot cocartesian
open BinaryProducts products renaming (unique to ⟨⟩-unique; unique′ to ⟨⟩-unique′)
Terminal-Elgot-Algebras : Terminal Elgot-Algebras
Terminal-Elgot-Algebras = record
{ ⊤ = record
{ A = ⊤
; algebra = record
{ _# = λ x → !
; #-Fixpoint = λ {_ f} → !-unique ([ id , ! ] ∘ f)
; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h)
; #-Folding = refl
; #-resp-≈ = λ _ → refl
}
}
; ⊤-is-terminal = record
{ ! = λ {A} → record { h = ! ; preserves = λ {X} {f} → sym (!-unique (! ∘ (A Elgot-Algebra.#) f)) }
; !-unique = λ {A} f → !-unique (Elgot-Algebra-Morphism.h f)
}
}
where
open Terminal terminal
Product-Elgot-Algebra : ∀ {EA EB : Elgot-Algebra} → Elgot-Algebra
Product-Elgot-Algebra {EA} {EB} = record
{ A = A × B
; algebra = record
{ _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ id) ∘ h)#ᵃ , ((π₂ +₁ id) ∘ h)#ᵇ ⟩
; #-Fixpoint = λ {X} {f} → begin
⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩
⟨ [ id , ((π₁ +₁ id) ∘ f)#ᵃ ] ∘ ((π₁ +₁ id) ∘ f) , [ id , ((π₂ +₁ id) ∘ f)#ᵇ ] ∘ ((π₂ +₁ id) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩
⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] ∘ f , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ∘ f ⟩ ≈˘⟨ ⟨⟩∘ ⟩
(⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (⟨⟩-unique′
(begin
π₁ ∘ ⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ⟩ ≈⟨ project₁ ⟩
[ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁)) ⟩
[ π₁ ∘ id , π₁ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₁ ∘ [ id , ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ∎)
(begin
π₂ ∘ ⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ⟩ ≈⟨ project₂ ⟩
[ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂)) ⟩
[ π₂ ∘ id , π₂ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₂ ∘ [ id , ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ∎)
)⟩
([ id , ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ∘ f) ∎
; #-Uniformity = λ {X Y f g h} uni → ⟨⟩-unique′
(begin
π₁ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ≈⟨ project₁ ⟩
(((π₁ +₁ id) ∘ f)#ᵃ) ≈⟨ #ᵃ-Uniformity
(begin
(id +₁ h) ∘ (π₁ +₁ id) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm)) ⟩
(π₁ ∘ id +₁ id ∘ h) ∘ f ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₁ +₁ id) ∘ (id +₁ h) ∘ f ≈⟨ pushʳ uni ⟩
((π₁ +₁ id) ∘ g) ∘ h ∎)⟩
(((π₁ +₁ id) ∘ g)#ᵃ ∘ h) ≈˘⟨ pullˡ project₁ ⟩
π₁ ∘ ⟨ ((π₁ +₁ id) ∘ g)#ᵃ , ((π₂ +₁ id) ∘ g)#ᵇ ⟩ ∘ h ∎)
(begin
π₂ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ≈⟨ project₂ ⟩
((π₂ +₁ id) ∘ f)#ᵇ ≈⟨ #ᵇ-Uniformity
(begin
(id +₁ h) ∘ (π₂ +₁ id) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))⟩
((π₂ ∘ id +₁ id ∘ h) ∘ f) ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₂ +₁ id) ∘ ((id +₁ h)) ∘ f ≈⟨ pushʳ uni ⟩
((π₂ +₁ id) ∘ g) ∘ h ∎)⟩
((π₂ +₁ id) ∘ g)#ᵇ ∘ h ≈˘⟨ pullˡ project₂ ⟩
π₂ ∘ ⟨ ((π₁ +₁ id) ∘ g)#ᵃ , ((π₂ +₁ id) ∘ g)#ᵇ ⟩ ∘ h ∎)
; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
}
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
+₁-id-swap : ∀ {X Y C} {f : X ⇒ (A × B) + X} {h : Y ⇒ X + Y} (π : A × B ⇒ C) → [ (id +₁ i₁) ∘ ((π +₁ id) ∘ f) , i₂ ∘ h ] ≈ (π +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ]
+₁-id-swap {X} {Y} {C} {f} {h} π = begin ([ (id +₁ i₁) ∘ ((π +₁ id) ∘ f) , i₂ ∘ h ] ) ≈⟨ ([]-congʳ sym-assoc) ⟩
([ ((id +₁ i₁) ∘ (π +₁ id)) ∘ f , i₂ ∘ h ] ) ≈⟨ []-cong₂ (∘-resp-≈ˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))) (∘-resp-≈ˡ (sym identityʳ)) ⟩
(([ (π ∘ id +₁ id ∘ i₁) ∘ f , (i₂ ∘ id) ∘ h ])) ≈˘⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ +₁∘i₂) ⟩
(([ (π +₁ id) ∘ (id +₁ i₁) ∘ f , (π +₁ id) ∘ i₂ ∘ h ])) ≈˘⟨ ∘[] ⟩
((π +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ]) ∎
foldingˡ : ∀ {X} {Y} {f} {h} → (((π₁ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵃ) ≈ ((π₁ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵃ
foldingˡ {X} {Y} {f} {h} = begin
((π₁ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₁ identityˡ)) ⟩
((((π₁ +₁ id) ∘ f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding ⟩
([ (id +₁ i₁) ∘ ((π₁ +₁ id) ∘ f) , i₂ ∘ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-id-swap π₁)⟩
((π₁ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵃ ∎
foldingʳ : ∀ {X} {Y} {f} {h} → ((π₂ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵇ ≈ ((π₂ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵇ
foldingʳ {X} {Y} {f} {h} = begin
((π₂ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₂ identityˡ)) ⟩
((((π₂ +₁ id) ∘ f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding ⟩
[ (id +₁ i₁) ∘ ((π₂ +₁ id) ∘ f) , i₂ ∘ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ (+₁-id-swap π₂) ⟩
((π₂ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵇ ∎
Product-Elgot-Algebras : ∀ (EA EB : Elgot-Algebra) → Product Elgot-Algebras EA EB
Product-Elgot-Algebras EA EB = record
{ A×B = Product-Elgot-Algebra {EA} {EB}
; π₁ = record { h = π₁ ; preserves = λ {X} {f} → project₁ }
; π₂ = record { h = π₂ ; preserves = λ {X} {f} → project₂ }
; ⟨_,_⟩ = λ {E} f g → let
open Elgot-Algebra-Morphism f renaming (h to f′; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to g′; preserves to preservesᵍ)
open Elgot-Algebra E renaming (_# to _#ᵉ) in record { h = ⟨ f′ , g′ ⟩ ; preserves = λ {X} {h} →
begin
⟨ f′ , g′ ⟩ ∘ (h #ᵉ) ≈⟨ ⟨⟩∘ ⟩
⟨ f′ ∘ (h #ᵉ) , g′ ∘ (h #ᵉ) ⟩ ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ ⟩
⟨ ((f′ +₁ id) ∘ h) #ᵃ , ((g′ +₁ id) ∘ h) #ᵇ ⟩ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²))) ⟩
⟨ ((π₁ ∘ ⟨ f′ , g′ ⟩ +₁ id ∘ id) ∘ h) #ᵃ , ((π₂ ∘ ⟨ f′ , g′ ⟩ +₁ id ∘ id) ∘ h) #ᵇ ⟩ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (pullˡ +₁∘+₁)) (#ᵇ-resp-≈ (pullˡ +₁∘+₁)) ⟩
⟨ ((π₁ +₁ id) ∘ (⟨ f′ , g′ ⟩ +₁ id) ∘ h) #ᵃ , ((π₂ +₁ id) ∘ (⟨ f′ , g′ ⟩ +₁ id) ∘ h) #ᵇ ⟩ ∎ }
; project₁ = project₁
; project₂ = project₂
; unique = ⟨⟩-unique
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra (Product-Elgot-Algebra {EA} {EB}) using () renaming (_# to _#ᵖ)
Cartesian-Elgot-Algebras : Cartesian Elgot-Algebras
Cartesian-Elgot-Algebras = record
{ terminal = Terminal-Elgot-Algebras
; products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB }
}