module Poset where
open import Level
open import Relation.Binary
open import Categories.Monad
open import Categories.Category
open import Categories.Category.Construction.Thin
open import Categories.Functor renaming (id to Id)
open import Categories.NaturalTransformation
open import Data.Product renaming (_×_ to _∧_)
open import Agda.Builtin.Unit
private
variable
o ℓ₁ ℓ₂ e : Level
record Closure (𝑃 : Poset o ℓ₁ ℓ₂) : Set (o ⊔ ℓ₁ ⊔ ℓ₂) where
open Poset 𝑃 using (Carrier; _≤_; _≈_)
field
T : Carrier → Carrier
extensiveness : ∀ {X : Carrier} → X ≤ T X
monotonicity : ∀ {X Y : Carrier} → X ≤ Y → T X ≤ T Y
idempotence : ∀ {X : Carrier} → T (T X) ≈ T X
Closure→Monad : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → Closure 𝑃 → Monad {o} {ℓ₂} {e} (Thin e 𝑃)
Closure→Monad {𝑃 = 𝑃} T = record
{ F = F
; η = η'
; μ = μ'
; assoc = λ {X} → lift tt
; sym-assoc = λ {X} → lift tt
; identityˡ = λ {X} → lift tt
; identityʳ = λ {X} → lift tt
}
where
open Closure T renaming (T to T₀)
open Poset 𝑃 using (Carrier; _≤_; _≈_; reflexive)
F = record
{ F₀ = T₀
; F₁ = monotonicity
; identity = lift tt
; homomorphism = lift tt
; F-resp-≈ = λ {A} {B} {f} {g} _ → lift tt
}
η' = ntHelper {F = Id} {G = F} record
{ η = λ X → extensiveness
; commute = λ {X} {Y} f → lift tt
}
μ' = ntHelper {F = F ∘F F} {G = F} record
{ η = λ X → reflexive idempotence
; commute = λ {X} {Y} f → lift tt
}
open NaturalTransformation η'
open NaturalTransformation μ' renaming (η to μ)
Monad→Closure : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → Monad {o} {ℓ₂} {e} (Thin e 𝑃) → Closure 𝑃
Monad→Closure {𝑃 = 𝑃} 𝑀 = record
{ T = F₀
; extensiveness = λ {X} → η.η X
; monotonicity = F₁
; idempotence = λ {X} → antisym (μ.η X) (η.η (F₀ X))
}
where
open Poset 𝑃
open Monad 𝑀
open Functor F
Closure↔Monad : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → (Closure 𝑃 → Monad {o} {ℓ₂} {e} (Thin e 𝑃)) ∧ (Monad {o} {ℓ₂} {e} (Thin e 𝑃) → Closure 𝑃)
Closure↔Monad = Closure→Monad , Monad→Closure