
Parallelizing MD5 on Intel
Architectures

Johannes Schlumberger Alexander Würstlein

March 3, 2009

MD5 is widely used as a cryptographic hash-function but also, for its
easy implementation, as a benchmark for integer operations on various
architectures. We provide an improved implementation on current Core
2 processors utilizing SIMD instructions as well as multiple cores, which
can serve as a comparative benchmark and a building block for forensic
software.

1 Introduction

Many publications use MD5 [6] as a
benchmark to compare the speed of in-
teger operations on various architectures.
MD5 is by design suited to this pur-
pose, because it consists of simple bit-
operations on 32-bit registers with only
few or no memory operation necessary. In-
tel CPUs serve as a basepoint for com-
parisons with massively parallel architec-
tures such as GPUs and FPGAs. We will
show that by using various parallelisation
techniques leveraging SIMD and multiple
cores a significant increase in the number
of iterations performed per second is pos-
sible.

Possible applications beyond bench-
marking include forensic and crypto-
graphic techniques such as the creation

and use of rainbow-tables, data integrity
and detection of transmission errors.

The MD5 algorithm is a well-known
hashing algorithm which is widely used in
cryptographic signature schemes such as
HMAC, public-key cryptography as well
as to check for transmission errors in elec-
tronic communication. It is also used to
securely1 hash passwords for authentica-
tion purposes.

Most prominent examples are the ex-
tended Unix crypt function, the later ver-
sions of Windows LAN-Manager hashes
and Kerberos.

The concrete implementation described
by this paper relies on several assumptions
regarding the nature of input data. We
will first describe those assumptions and
show their applicability to our usage sce-
nario, also leading to several important

1As of yet, the known collission-based attacks [4] on MD5 rely on beeing able to append large amounts
of data to a message. This makes those attacks impractical for purposes of finding collisions to
passwords.

1

-400

-300

-200

-100

 0

 100

 200

 300

 400

-10 -5 0 5 10

m
ill

io
ns

 o
f i

te
ra

tio
ns

 p
er

 s
ec

on
d

number of threads

Figure 1: Performance in iterations per second with different numbers of threads on
various CPUs for our 32 bit and 64 bit version. The dashed line is a linear ex-
trapolations of the single threaded performance of the 16 core machine with
the 64bit implementation to show the linear relation between the number of
threads and the measured performance.

optimizations. Furthermore we will de-
scribe our implementation and its perfor-
mance to several pre-existing implementa-
tions on different architectures.

2 Setting

In our following implementation we as-
sumed a hypothetical function for hash-
ing passwords which is similar but not
identical to Unix crypt in its MD5 mode.
For a given password p and random salt
s, the hashed password h is given by2

h = MD5(s.p). The main difference to

Unix crypt is that only one round of MD5
is used, whereas in Unix crypt the pass-
word and salt are hashed 1000 times to
increase the cost of brute-force attacks by
that factor. Benchmarks between our im-
plementation and Unix crypt are easily
comparable by multiplying or dividing the
resulting rounds per second by 1000.

Our program searches, for a given hash
and salt, for the password belonging to
that combination of hash and salt by sim-
ply iterating over all possible combina-
tions of all letters in the given alpha-
bet. Passwords are tried from the shortest
passwords to the longer ones up to a max-

2with ”.” as the append operator

2

a a′

b b′

c c′

d d′

fn(b, c, d) Σ

Tn Xn sn

rol

Σ

Figure 2: A single step of the MD5 hash function. Accumulated data from the pre-
vious step consists of 32bit values a through d in registers, after operations
are performed, output values a′ through d′ are placed in those same regis-
ters. Values Tn are taken from a table of integer constants which is part
of the MD5 specification. Xn is the appropriate part of the message to be
hashed. sn is the amount of bits by which the rotate-left operation is to be
performed, this is also part of the specification. Only a is changed in each
step, the other registers are left unchanged.

imum of 25 characters. The number of
threads used can be specified.

2.1 MD5

Input data for MD5 is padded to a mul-
tiple of 512 bits by adding a single ”1”
bit after the message followed by an ap-
propriate amount of zeros, such that, after
adding the lower 64 bit of the length of the
unpadded message, the whole input data
is the desired multiple of 512 bits long.

Hashing is performed in as many iter-
ations as there are 512 bit blocks. Each
iteration consists of 4 rounds and each of
those rounds consists of 16 steps like the
one depicted in figure 2. The registers a
through d are initialized by special con-
stants.

In the n-th step, accumulated data is
taken from registers a through d. First,
the function f(b, c, d) is applied. f can be

any of four bit-operations on the inputs b,
c and d like for example b ∧ c ∨ (¬b) ∧ d.
f from each round to the next. To the
result of f one of 64 constants Tn derived
from the |sin(x)| function and one of the
16 input words from the current block of
the padded message are added. A rotate
left operation by sn bits is performed and
finally b is added and the end result placed
in a. During those operations, b, c and d
are left unchanged.

Between two steps the registers a, b, c
and d are cyclically swapped. Thus, the
second step will operate on registers b, c,
d and a, and so on. After an iteration is
completed, the registers a through d are
incremented by their values before the it-
eration. After the last iteration, the hash
is given by a through d.

We assume that our passwords are
shorter than 25 bytes and that the salt
is shorter than 6 bytes. This means that

3

1 2 3 41

input string 1

salt password padding
a b c d

xmm0 a1 a2 a3 a4

xmm1 b1 b2 b3 b4

xmm2 c1 c2 c3 c4

xmm3 d1 d2 d3 d4

Figure 3: Usage of SSE registers by our implementation. A set of four SSE registers
(e.g. xmm0 through xmm3) holds 4 concurrent MD5 iterations 1 through 4,
where each stores its accumulated values a through d in the appropriate 4
bytes of each SSE register as shown e.g. for input string 1. The inputs
are interleaved in memory so that they can be directly loaded into the SSE
registers.

we will only have to perform one iteration
because the length of the unpadded input
is shorter than 512− 64 bits.

3 Implementation

3.1 Threads

Parallelization is achieved in two distinct
ways. First there are a (configurable)
number of threads amongst which the
search space is divided. After the threads
are started, there is no further need for
any communication, except in the case of
termination through a thread finding the
wanted cleartext password or exhaustion
of its search space. Therefore our imple-
mentation scales linearly with the number

of threads as shown in figure 1.

3.2 SSE

More importantly, we calculate several
MD5-Sums in parallell on every single
core. This is achieved through the SSE
instruction set in current x86 processors.
Usually MD5 is calculated using 4 regis-
ters of 32 bits each. In our implemen-
tation, 4 of those 32 bit registers are re-
placed by a single 128 bit wide SSE reg-
ister as shown in figure 3. Because there
is a non-removable data-dependency be-
tween every step of a MD5 iteration, it is
not possible to speed up the runtime of a
single iteration, instead the throughput is
increased.

4

For four parallel MD5 iterations, four
SSE registers are always needed. Addi-
tionally we need three temporary registers
for prefetching the data to be hashed and
to perform the calculation steps. There-
fore, in the 32 bit mode where in total 8
SSE registers are available, we are able to
perform 4 parallel MD5 iterations. In 64
bit mode, 16 SSE registers are available,
leading to a theoretical maximum of 12
parallel MD5 iterations. As one can see in
figure 1 this theoretical factor of 3 between
the 64bit and 32bit version is not reached,
in our benchmarks, the 64bit code is only
about twice as fast.

We decided to use assembler as the im-
plementation language for the inner loop
function performing the MD5 algorithm.
This function is called by a C program
which generates all possible passwords3, in
a format fit to be loaded into SSE registers
for our algorithm as shown in figure 3 and
evaluates the return value to inform the
user if a password has been found. Also
threads are set up and the search space is
divided among the threads. Various minor
optimizations in the assembler code were
used, for example branch prediction pre-
fixes, prefetching of operands from mem-
ory into a temporary register and removal
of constant operands4.

3.3 Memory Access

The memory footprint of our algorithm is
fairly minimal. Only the password gen-
eration and the constants needed for the
MD5 steps are read from memory, which
will, given the very small size (some hun-
dred bytes) of the respective areas, easily

fit into the L1 cache of a modern CPU.
Also there is no writing into shared data
structures, so that no thread should inval-
idate the cache of another core.

4 Related Work and
Comparison

Several implementations of MD5 for
brute-force attacks on password hashes
are available ([3], [1], [2], [5]). In the case
of ”John the Ripper” [1] by which our im-
plementation was inspired, sourcecode is
available for review. On the Xeon machine
used (see figure 1) John reaches about 7.3
million MD5 iterations per second in a
single thread, whereas our 64 bit imple-
mentation reaches 33.4 million iterations
per second. However, there are some dif-
ferences which might affect performance,
because John the Ripper builds its pass-
words by a more complicated grammar us-
ing dictionaries.

An earlier unpublished implementa-
tion by the authors of this paper using
OpenSSL performed around 0.8 million it-
erations per second.

MDCrack [3] claims 42.3 million itera-
tions on a 3.2GHz Xeon. 108 million it-
erations per second are claimed on [5] for
a comparable MD5 search on a GeForce
8800 Ultra via CUDA. BarsWF [2] even
claims over 300 million iterations for its
GPU implementation and over 100 mil-
lioin iterations for its implementation on
SSE.

3all words matching the regular expression a {1, n} where a is an element of all character classes and
n the maximum length specified on the command line

4This is based on the assumption made above, that passwords are short. Therefore most of the
block to be hashed will always be padded with zeros, which saves us one addition and a fetch from
memory

5

5 Conclusion

We have shown clear that definite im-
provements are possible when fully uti-
lizing the available possiblities for par-
allelization. The performance of previ-
ous implementations was clearly exceeded
by a significant factor. Yet there are
some faster closed source implementations
and implementations on different hard-
ware like GPUs.

Possible fields of use for the techniques
shown include the creation of rainbow ta-
bles, parallell integrity checking for high-
throughput communications and network-
ing devices or mass verification of certain
signature methods such as HMAC-MD5.
Also the implementation of different hash-
ing algorithms such as SHA-1 would be
easy to accomplish and should bring sim-
ilar improvements in performance.

Further fields of study are numerous.
While we used assembly language for our
implementation, it is also possible that
higher level languages could achieve a sim-
ilar level of performance. Therefore a
comparison of different implementations
and toolchains with respect to the opti-
mizations performed and the performance
achieved should prove interesting. Archi-
tectures besides Intel x86 such as IBM’s
Power and Sun’s Niagara also feature a

number of cores and SIMD capabilities. A
port of our software could therefore serve
as a point of comparison between those
different architectures, and if compared
with implementations in a high-level lan-
guage, also for the quality of the respective
toolchains.

References

[1] John the ripper http://www.
openwall.com/john/.

[2] Svarychevski Michail Aleksandrovich.
Barswf http://3.14.by/en/md5.

[3] Gregory Duchemin. Mdcrack
http://c3rb3r.openwall.net/
mdcrack/ln.html. 2007.

[4] Xiaoyun Wang et al. How to
break md5 and other hash func-
tions http://web.archive.
org/web/20070604205756/http:
//www.infosec.sdu.edu.cn/paper/
md5-attack.pdf. 2005.

[5] Mario Juric. Notes: CUDA
MD5 Hashing Experiments http:
//majuric.org/software/cudamd5/.

[6] R. Rivest. RFC 1321 - The MD5
Message-Digest Algorithm. 1992.

6

http://www.openwall.com/john/
http://www.openwall.com/john/
http://3.14.by/en/md5
http://c3rb3r.openwall.net/mdcrack/ln.html
http://c3rb3r.openwall.net/mdcrack/ln.html
http://web.archive.org/web/20070604205756/http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf
http://web.archive.org/web/20070604205756/http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf
http://web.archive.org/web/20070604205756/http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf
http://web.archive.org/web/20070604205756/http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf
http://majuric.org/software/cudamd5/
http://majuric.org/software/cudamd5/

	Introduction
	Setting
	MD5

	Implementation
	Threads
	SSE
	Memory Access

	Related Work and Comparison
	Conclusion

