Klausur Braindump*

Swarm Intelligence

Various contributors

Summer Semester '21

1 Introduction

11 Points

a) (3 Points) Recite three reasons given in the lecture as to why systems are becoming more complex.
b) (3 Points) Give three self-*-properties.
c) (3 Points) Define "emergence".
d) (2 Points) Which research question and algorithm were related to emergence. Hint: Swarm of webpages

2 Particle Swarm Optimisation

a) (1 Point) What properties does the objective function have?
b) (2 Points) Give and explain two similarly but opposing goals.
c) (2 Points) List all the attributes of a particle and the swarm.
d) (4 Points) Draw a particle and with its components, and how it changes in the next time step.
e) (4 Points) Give the exact formula for operating on a particle. Explain each parameter and type (random, dimensions, ...).

3 Convergence of PSO

a) (2 Points) When does PSO converge?

Hint: You only need reference two variables
b) Let the Matrix A be

$$
A=\left(\begin{array}{cc}
1-b & a \\
-b & a
\end{array}\right)
$$

where the variables a and b may have any value.
i) (4 Points) Compute the eigenvalues of the matrix A.
ii) (2 Points) For which values of λ_{1} and $\lambda_{2}\left(\lambda_{1} \geq \lambda_{2}\right)$ does the swarm converge.
iii) (1 Point) Assuming λ_{1} is real-valued and λ_{2} is a non-real complex number, and the condition from ii) is given, sketch a diagram of how the simulation would converge.

[^0]Alternatively the question is what new attributes arise from a particle being part of a swarm

This problem was probably broken, as this combination of Eigenvalues can only occur with a complex-valued matrix.

4 HITS

a) (1.5 Points) Give three kinds of search queries.
b) (1.5 Points) What does "HITS" stand for?
c) (2 Points) What do the variables $x^{(p)}$ and $y^{(p)}$ designate?
d) (6 Points) Give the formula for

$$
x^{(p)}=
$$

The points were shared among d) and e).
and

$$
y^{(p)}=
$$

Hint: Use $a \rightarrow b$ to represent edges
e) Mark the right variables being computed:
$x^{(p)}$$y^{(p)}$$x^{(p)}$
$y^{(p)}$
f) (2 Points) HITS uses the matrices $A A^{\top}$ and $A^{\top} A$. Give two important mathematical properties these matrices must have.

5 Evolutionary Algorithms

a) (6 Points) Draw the evolutionary cycle for an (μ, λ)-EA algorithm, with the objective function F.
b) (2 Points) Let $\pi=(7,5,3,1,2,8,4,6)$ be an unsorted sequence. Compute $\operatorname{INV}(\pi)$ and $\operatorname{HAM}(\pi)$.
c) (2 Points) Assume π has been sorted. Give the values of $\operatorname{INV}(\pi)$ and $\operatorname{HAM}(\pi)$ that must have alternatively ended in $\ldots, 8,2,4,6$) or $\ldots, 2,8,4,6$). hold in that case.
d) (3 Points) Given the following genotypes for the Travelling Salesperson Problem,

1	2	3	4	5	6	7	8

draw the phenotypes before and after applying the inversion operator.
e) (3 Points) Apply the one-point crossover at the indicated line:

Parent 1 has a different value.

6 Ant Colony Optimisation

ACO is being used to solve TSP on the Graph

where the partial route of the ant a is $s_{a}=(1,3,2,5)$.
It is assumed that the distance between every node is 1 . The evaporation rate is $\rho=0.5$. For every pheromone value $\tau_{i j}=\tau_{j i}$ holds.
a) (1 Point) Give the set of vertices ant a visiting the node 5 is allowed to consider next

$$
\mathcal{N}\left(s_{a}\right)=\{
$$

b) (6 Points) Compute the probabilities that ant a visiting the node 5 will choose these vertexes. Assume the pheromone values are $\tau_{45}=\tau_{25}=3$ and $\tau_{56}=\tau_{15}=\tau_{35}=2$.

- $p\left(\{1,5\} \mid s_{a}\right)$ probability that is the ant a will move from node 5 to 1 .
- $p\left(\{5,6\} \mid s_{a}\right)$ probability that is the ant a will move from node 5 to 6 .
- $p\left(\{4,5\} \mid s_{a}\right)$ probability that is the ant a will move from node 5 to 4 .
c) (2 Points) Compute the difference g_{56} that choosing the edge $5 \rightarrow 6$ would make, using "Ant Quantity" function and taking Q to be 2 .
d) (2 Points) Compute the updated pheromone values for τ_{56} and τ_{45}, assuming there is only one ant a that chose the edge $5 \rightarrow 6$ in this turn.

[^0]: * As always: The document is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. Please report issues or improvements via GitLab: https://gitlab.cs.fau.de/oj14ozun/si-ss21.

