
[DRAFT] Kalah Game Protocol

Kaludercic, Philip Völk, Tobias

Abstract
This document specifies a protocol for playing the
game Kalah, a member of the Mancala family. It
has been designed to be modularized, so that not
all implementations have to implement all features.
The main modules presented here are freeplay, eval-
uation and validation.

This document specified version 1.1.0 of the KGP
protocol.

Contents
1 Prelude 1

1.1 Definitions . . . . . . . . . . . . . . . 1
1.2 Formal Structure . . . . . . . . . . . 1
1.3 Protocol Overview . . . . . . . . . . 2

2 Defaut Modes 2
2.1 Freeplay Mode . . . . . . . . . . . . 3

3 Freeplay commands 3
3.1 Evaluation Mode . . . . . . . . . . . 3
3.2 Evaluation commands . . . . . . . . 3
3.3 Verification Mode . . . . . . . . . . . 4
3.4 Verification commands . . . . . . . . 4

4 Responses 4

5 The set Command 4
5.1 info-group . . . . . . . . . . . . . . 4
5.2 time-group . . . . . . . . . . . . . . 4
5.3 auth-group . . . . . . . . . . . . . . 4
5.4 game-group . . . . . . . . . . . . . . 5

6 Notes 5

7 Distribution of This Document 5

1 Prelude
The key words “MUST”, “MUST NOT”, “RE-
QUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “NOT
RECOMMENDED”, “MAY”, and “OPTIONAL”
in this document are to be interpreted as described
in BCP 14 [RFC2119] [RFC8174] when, and only
when, they appear in all capitals, as shown here.

1.1 Definitions
A server organizes activities between one or more
clients. The server waits for clients to request an
activity, that the server may or may not organize.
Activities cannot be changed, after they have been
requested.

The server and the client communicate using a text-
based, line-oriented protocol, over a reliable, ordered
and error-checked transport layer (e.g. TCP).

1.2 Formal Structure
The protocol consists of commands sent between
client and server. Server-to-client and client-to-
server commands have the same form, consisting
of:

• Optional, unique command ID. Client and
server MUST ensure that no ID is reused.

• Optional command reference (addressing a pre-
vious command ID). The client MAY NOT
reference a non-existing command ID.

• A command name
• A number of arguments

The ABNF representation of a command is as fol-
lows:

command = id name *(*1WSP argument) CRLF
id = [[*1DIGIT] [ref] *1WSP]
ref = ["@" *1DIGIT]

1



name = *1(DIGIT / ALPHA)
argument = integer / real / word

/ string / board
integer = [("+" / "-")] *1DIGIT
real = [("+" / "-")] *DIGIT "." *1DIGIT
word = *1(DIGIT / ALPHA / "-" / ":")
string = DQUOTE scontent DQUOTE
scontent = *("\" CHAR / NDQCHAR)
board = "<" *1DIGIT *("," *1DIGIT) ">"

where NDQCHAR is every CHAR except for double
quotes, backslashes and line breaks. Each command
MUST at most be most 16384 characters long, in-
cluding trailing white space. Any line beyond that
MAY be ignored by a server.

An argument has a statically identifiable type, and
is either an integer (32, +0, -100, . . . ), a real-
valued number (0.0, +3.141, -.123, . . . ), a string
(single-word, "with double quotes", "like \"
this", . . . ) or a board literal.

Board literals are wrapped in angled-brackets and
consist of a an array of positive, unsigned integers
separated using commas. The first number indicates
the board size n, the second and third give the
number of stones in the south and north Kalah
respectively. Values 4 to 4 + n list the number of
stones in the south pits, 4 + n + 1 to 4 + 2n + 1 the
number of stones in the north pits:

<3,10,2,1,2,3,4,2,0>
^ ^ ^ ^ ^
| | | | |
| | | | \__ North pits: 4, 2 and 0
| | | \________ South pits: 2, 1 and 3
| | \__________ North Kalah
| \_____________ South Kalah
\_______________ Board Size

1.3 Protocol Overview
The communication MUST begin by the server send-
ing the client a kgp command, with three arguments
indicating the major, minor and patch version of
the implemented protocol, e.g.:

kgp 1 0 1

The client MUST parse this command and that it
implements everything that is necessary to com-
municate. The major version indicates backwards
incompatible changes, the minor version indicates

forwards incompatible changes and the patch ver-
sion indicates minor changes. A client MAY only
check the major version to ensure compatibility, and
MUST check the minor and patch version to ensure
availability of later improvements to the protocol.

The client MUST eventually proceed to respond
with a mode command, indicating the activity it is
interested in. The mode command is REQUIRED
to have one string-argument, indicating the activity.

mode freeplay

In case the server doesn’t recognize or support the
requested activity, it MUST immediately indicate
an error and close the connection:

error "Unsupported activity"
goodbye

The detail of how the protocol continues depends on
the chosen activity. The server SHOULD terminate
the connection with a goodbye command.

After the connection has been established and ver-
sion compatibility has been ensured, the server MAY
send a ping command. The client MUST answer
with pong, and SHOULD do so as quickly as possi-
ble. In absence of a response, the server SHOULD
terminate the connection.

Both client and server MAY send set commands
give the other party hints. Both client and server
SHOULD try to handle these, but MUST NOT
terminate the connection because of an unknown
option. Version commands indicating capabilities
and requests SHOULD be handled between the ver-
sion compatibility is ensured (kgp) and the activity
request (mode).

Any command (client or server) MAY be referenced
by a response command: ok for confirmations and
error for to indicate an illegal state or data. All
three MUST give a semantically-opaque string ar-
gument. The interpretation of a response depends
on the mode.

2 Defaut Modes
The following sections shall specify modes (“activ-
ities”) that a client SHOULD be able to request
from any server. Further modes MAY be supported,
but they are not specified here.

2



2.1 Freeplay Mode
The “freeplay” involves the server sending the client
a sequence of board states (state) that the client
can respond to (move). The server MAY restrict the
time a client has to respond (stop), that the client
MAY also give up by their own accord (yield).
IDs and references SHOULD be used to ensure
the correct and unambitious association between
requests and answers.

A server might use the freeplay mode to implement
a tournament, as seen in this example:

s: kgp 1 0 1
c: mode freeplay
s: 4 state <3,0,0,3,3,3,3,3,3>
c: @4 move 1
s: 6@4 stop
s: 8 state <3,1,3,0,4,4,4,3,3>
c: @8 move 3
c: @8 move 2
c: @8 yield
s: 10@8 stop
...

Where s: are commands sent out by the server,
and c: by the client.

There are no requirements on how a server is to
send out state-requests and on how long the client
is given to respond.

3 Freeplay commands
The following commands must be understood for a
client to implement the “freeplay” mode:

state [board] (server) Sends the client a board
state to work on. The command SHOULD have
an ID so that later move, yield and stop com-
mands can safely reference the request they are
responding to, without interfering with other
concurrent requests.

The client always interprets the request as making
the move as the “south” player.

move [integer] (client) In response to a state
command, the client informs the server of their
preliminary decision. Multiple move commands
can be sent out, iteratively improving over the
previous decision.

An integer n designates the n’th pit, that is to say
uses 1-based numbering. The value must be in
between 1 ≤ n < s, where s is the board size.

stop (server) An indication by the server that it
is not interested in any more move commands
for some state request. Any move command
sent out after a stop MUST be silently ignored.

If the client has not sent a move command, the server
MUST make a random decision for the client.

yield (client) The voluntary indication by a client
that the last move command was the best it
could decide, and that it will not be responding
to the referenced state command any more.
The client sending a yield command is analo-
gous to a server sending stop.

3.1 Evaluation Mode
The “evaluation” mode involves the client giving
numerical evaluations for given states. An evalua-
tion is a real-valued number, without any specified
meaning. The client SHOULD be consistent in
evaluating states (the same board should be ap-
proximately equal, a board with a better chance of
winning should have a better score, . . . ).

After requesting the mode with

mode eval

the server may immediately start by sending state
commands as specified for the “freeplay” mode.

3.2 Evaluation commands
state [board] (server) See “Freeplay com-

mands”. The server MUST send a command
ID.

eval [real] (client) The client MUST reference
the ID of the state command it is evaluating.
Multiple commands can be sent out in reference
to one state request.

stop (client) See “Freeplay commands”. The
server MUST use a command reference. The
client SHOULD stop responding to the refer-
enced state request.

3



3.3 Verification Mode
To ensure that clients don’t misinterpret the rules of
Kalah, they can request this game mode and have
the server challenge them with random game states
that they should compute.

A client does this by initially sending

mode verify

3.4 Verification commands
problem [board] [move] (server) The server

send the valid board state and a legal move.
The client will respond to this using solution.
The server MUST send a command ID.

solution [board] [integer] (client) A re-
sponse to a problem. The client sends back
the resulting board state and an indication
whether or not the move was a repeat move or
not (0 for false and non-0 for true). The client
SHOULD use a command ID.

The server will respond to this message with an
erorr message in case the client made a mistake.

4 Responses

5 The set Command
The set command may be used at any time by
both client and server to inform the other side about
capabilities, internal states, rules, etc. The structure
of a set command is

set [option] [value]

Each option is structured using colons (:) to group
commands together. Each command group specified
here SHOULD be implemented entirely by both
client and server:

5.1 info-group
On connecting, server and client may inform each
other about each other. The options of this group
are:

info:name (string) The codename of the client or
the server.

info:authors (string) Authors who wrote the
client

info:description (string) A brief description of
the client’s algorithm.

info:comment (string) Comment of the client
about the current game state and it’s chosen
move. Might contain (depending on the algo-
rithm), number of nodes, search depth, evalua-
tion, . . .

5.2 time-group
For “freeplay” and especially “simple”, the server
may indicate how it manages the time a client is
given. The options of this group are:

time:mode (word) One of none when no time is
tracked, absolute if the client is given an abso-
lute amount of time it may use and relative if
the time used by a client for one state request
has no effect on the time that may be used for
other requests.

time:clock (integer) Number of seconds a client
has left. This option MAY be set by the server
before issuing a state command.

time:opclock (integer) Number of seconds an
opponent has left.

5.3 auth-group
In cases where an identity has to be preserved over
multiple connections (a tournament or other com-
petitions), some kind of authentication is required.
The auth group consists of a single variable to im-
plement this as simply as possible:

auth:token (string) As soon as the client sends
sets this option, the server will associate the
current client with any previous client that
has used the same token. No registration is
necessary, and the server MAY decide to abort
the connection if the token is not secure enough.

The value of the token must be a non-empty string.

auth:forget (string) Request that the server for-
gets a client associated with a token. The token
MAY NOT be known to the server, and the
server SHOULD NOT directly indicate if the
request succeeded.

4



The client SHOULD use an encrypted connection
when using the auth group, as to avoid MITM
attacks. The server MUST NOT reject connections
that do not set auth:token.

5.4 game-group
As neither “freeplay” nor “simple” mode guarantee
a logical sequence of state commands, that might
represent a possible game, the agent cannot assume
that two consecutive state commands represent the
chronological development of a game between the
south and north sides.

In case the server internally matches two clients
against one another, and sends these a logical se-
quence of state commands, the game group may
be used to indicate this.

The options this groups offers are:

game:id (string) An opaque identifier to represent
a logical game. The option MUST be set before
a state command has been sent. The client
MAY then associate state commands with the
same game:id annotations and assume them
to be a sequence of game states.

Two consecutive state commands with the same
game:id MUST represent two game states. An
empty string indicates an anonymous game.

game:uri (string) A URI pointing to a resource
that describes the current game in more detail.
The resource should be publicly accessible, or
provide the necessary credentials for the client
to access it.

An empty string indicates there is no URI for this
game.

game:opponent (string) A name of the opponent
the client is playing against. The name
SHOULD be unique. Interpreted the same
way game:id is. An empty string indicates an
unknown opponent.

6 Notes
This section is non-normative.

The intention of the KGP protocol is to provide a

simple, extensible yet forward compatible to imple-
ment language for AI applications.

7 Distribution of This Docu-
ment

This work is licensed under Attribution-
NoDerivatives 4.0 International. To
view a copy of this license, visit h t t p s :
//creativecommons.org/licenses/by-nd/4.0.

5

https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0

	Prelude
	Definitions
	Formal Structure
	Protocol Overview

	Defaut Modes
	Freeplay Mode

	Freeplay commands
	Evaluation Mode
	Evaluation commands
	Verification Mode
	Verification commands

	Responses
	The set Command
	info-group
	time-group
	auth-group
	game-group

	Notes
	Distribution of This Document

