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Subject Matter

How to organise a comparative
competition between student?



Case Study

The “Kalah” competition as part of
the AI1 course.



Intermission: What is “Kalah”?

An abstract board game between two agents.
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Modest Proposal

Replace the old framework with an
interactive protocol.
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Client-Server Protocol Example

kgp 1 0 0

mode freeplay
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5
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IDs and Reference numbers
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Ensuring transactional behaviour to avoid race conditions
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Weak Extensibility

set auth:token "60b725f10c"
set game:id 98031512

I Small and modular “core
language” keeps
implementations simple

I Server and client can
communicate hints using
set-commands

I Set-commands can model
shared state or
“pseudo-Variables”
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Concrete KGP Implementations
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jkgp (Java)
pykgp (Python)

libakgp (C/C++), WIP
kgpc (Generic Wrapper)

Server

go-kgp (Go)
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from random import choice

import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)
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+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker
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