
On the Designing a Text Protocol for the
Game of Kalah

Kaludercic, Philip1 2

Seminar Presentation, 28. July 2022

1philip.kaludercic@fau.de
2https://wwwcip.cs.fau.de/~oj14ozun/

https://wwwcip.cs.fau.de/~oj14ozun/


Subject Matter

How to organise a comparative
competition between student?



Case Study

The “Kalah” competition as part of
the AI1 course.



Intermission: What is “Kalah”?

An abstract board game between two agents.

24 16



Intermission: What is “Kalah”?

24 16



Intermission: What is “Kalah”?

24 16



Intermission: What is “Kalah”?

24 16



Intermission: What is “Kalah”?

24 16



Background

I There has already been a tournament for a few
years

I Clients were implemented in Java or Scala
I The Framework was experiencing growth

difficulties



Background

I There has already been a tournament for a few
years

I Clients were implemented in Java or Scala

I The Framework was experiencing growth
difficulties



Background

I There has already been a tournament for a few
years

I Clients were implemented in Java or Scala
I The Framework was experiencing growth

difficulties



Modest Proposal

Replace the old framework with an
interactive protocol.



Design Choices

I Embed into an existing protocol or create
something new?

I Require a persistent connection or be stateless?
I Simple or extensible?



Design Choices

I Embed into an existing protocol or create
something new?

I Require a persistent connection or be stateless?

I Simple or extensible?



Design Choices

I Embed into an existing protocol or create
something new?

I Require a persistent connection or be stateless?
I Simple or extensible?



... create something new?

Protobuf, MessagePack, . . .
+ Ready-made libraries exist

- Increased complexity

Custom Plaintext Protocol

+ Can be kept simple
- Requires some parsing



... create something new?

Protobuf, MessagePack, . . .
+ Ready-made libraries exist
- Increased complexity

Custom Plaintext Protocol

+ Can be kept simple
- Requires some parsing



... create something new?

Protobuf, MessagePack, . . .
+ Ready-made libraries exist
- Increased complexity

Custom Plaintext Protocol
+ Can be kept simple

- Requires some parsing



... create something new?

Protobuf, MessagePack, . . .
+ Ready-made libraries exist
- Increased complexity

Custom Plaintext Protocol
+ Can be kept simple
- Requires some parsing



... a persistent connection?

Persistent
+ Conceptually simple

- Connection can break

Short-lived

+ More resilient
- Conceptually less simple

and slower



... a persistent connection?

Persistent
+ Conceptually simple
- Connection can break

Short-lived

+ More resilient
- Conceptually less simple

and slower



... a persistent connection?

Persistent
+ Conceptually simple
- Connection can break

Short-lived
+ More resilient

- Conceptually less simple
and slower



... a persistent connection?

Persistent
+ Conceptually simple
- Connection can break

Short-lived
+ More resilient
- Conceptually less simple

and slower



... extensible?

Extensible
+ Futureproof

- Requires more overhead

Fixed

+ More simple
- Hard to adapt



... extensible?

Extensible
+ Futureproof
- Requires more overhead

Fixed

+ More simple
- Hard to adapt



... extensible?

Extensible
+ Futureproof
- Requires more overhead

Fixed
+ More simple

- Hard to adapt



... extensible?

Extensible
+ Futureproof
- Requires more overhead

Fixed
+ More simple
- Hard to adapt



Client-Server Protocol Example

kgp 1 0 0

mode freeplay
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5

. . . and so on . . .



Client-Server Protocol Example

kgp 1 0 0
mode freeplay

4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5

. . . and so on . . .



Client-Server Protocol Example

kgp 1 0 0
mode freeplay
4 state <3,0,0,3,3,3,3,3,3>

@4 move 1
6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5

. . . and so on . . .



Client-Server Protocol Example

kgp 1 0 0
mode freeplay
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1

6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5

. . . and so on . . .



Client-Server Protocol Example

kgp 1 0 0
mode freeplay
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
6@4 stop

8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5

. . . and so on . . .



Client-Server Protocol Example

kgp 1 0 0
mode freeplay
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3

@8 move 5

. . . and so on . . .



Client-Server Protocol Example

kgp 1 0 0
mode freeplay
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5

. . . and so on . . .



Client-Server Protocol Example

kgp 1 0 0
mode freeplay
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
6@4 stop
8 state <3,1,3,0,4,4,4,3,3>
@8 move 3
@8 move 5

. . . and so on . . .



The Board Representation

<4,2,1,2,4,3,3,1,3,0,4>

→ Compromise between a “statelessness” and
“persistence”



The Board Representation

<4,2,1,2,4,3,3,1,3,0,4>

→ Compromise between a “statelessness” and
“persistence”



The Board Representation

<4,2,1,2,4,3,3,1,3,0,4>

→ Compromise between a “statelessness” and
“persistence”



The Board Representation

<4,2,1,2,4,3,3,1,3,0,4>

→ Compromise between a “statelessness” and
“persistence”



The Board Representation

<4,2,1,2,4,3,3,1,3,0,4>

→ Compromise between a “statelessness” and
“persistence”



The Board Representation

<4,2,1,2,4,3,3,1,3,0,4>

→ Compromise between a “statelessness” and
“persistence”



The Board Representation

<4,2,1,2,4,3,3,1,3,0,4>

→ Compromise between a “statelessness” and
“persistence”



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay

mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n

stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield

goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0

+ 0.3s



kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

t = t0 + 0.1s t = t0 + 0.2s

t = t0 + 0.4s

t = t0 + 0.3s



IDs and Reference numbers

Server

state <3,2,1,1,0,3,2,5,1>

stop
state <3,2,0,0,1,3,2,5,1>

stop

Client

move 1

move 1
move 1
move 2
move 3

Ensuring transactional behaviour to avoid race conditions



IDs and Reference numbers

Server

4 state <3,2,1,1,0,3,2,5,1>

6 stop
8 state <3,2,0,0,1,3,2,5,1>

10 stop

Client

move 1

move 1
move 1
move 2
move 3

Ensuring transactional behaviour to avoid race conditions



IDs and Reference numbers

Server

4 state <3,2,1,1,0,3,2,5,1>

6@4 stop
8 state <3,2,0,0,1,3,2,5,1>

10@6 stop

Client

@4 move 1

@4 move 1
@4 move 1
@8 move 2
@8 move 3

Ensuring transactional behaviour to avoid race conditions



IDs and Reference numbers

Server

4 state <3,2,1,1,0,3,2,5,1>

6@4 stop
8 state <3,2,0,0,1,3,2,5,1>

10@6 stop

Client

@4 move 1

@4 move 1
@4 move 1
@8 move 2
@8 move 3

Ensuring transactional behaviour to avoid race conditions



Weak Extensibility

kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

I Small and modular “core
language” keeps
implementations simple

I Server and client can
communicate hints using
set-commands

I Set-commands can model
shared state or
“pseudo-Variables”



Weak Extensibility

kgp 1 0 0
set info:name "John Doe"
mode freeplay
set game:id 98031512
4 state <3,0,0,3,3,3,3,3,3>
@4 move 1
set info:comment "Guess"

I Small and modular “core
language” keeps
implementations simple

I Server and client can
communicate hints using
set-commands

I Set-commands can model
shared state or
“pseudo-Variables”



Weak Extensibility

set auth:token "60b725f10c"
set game:id 98031512

I Small and modular “core
language” keeps
implementations simple

I Server and client can
communicate hints using
set-commands

I Set-commands can model
shared state or
“pseudo-Variables”



Kalah
Game

Protocol



K

alah

G

ame

P

rotocol





Concrete KGP Implementations

Client Libraries

jkgp (Java)
pykgp (Python)

libakgp (C/C++), WIP
kgpc (Generic Wrapper)

Server

go-kgp (Go)



Concrete KGP Implementations

Client Libraries

jkgp (Java)

pykgp (Python)
libakgp (C/C++), WIP
kgpc (Generic Wrapper)

Server

go-kgp (Go)



Concrete KGP Implementations

Client Libraries

jkgp (Java)
pykgp (Python)

libakgp (C/C++), WIP
kgpc (Generic Wrapper)

Server

go-kgp (Go)



Concrete KGP Implementations

Client Libraries

jkgp (Java)
pykgp (Python)

libakgp (C/C++), WIP

kgpc (Generic Wrapper)

Server

go-kgp (Go)



Concrete KGP Implementations

Client Libraries

jkgp (Java)
pykgp (Python)

libakgp (C/C++), WIP
kgpc (Generic Wrapper)

Server

go-kgp (Go)



Concrete KGP Implementations

Client Libraries

jkgp (Java)
pykgp (Python)

libakgp (C/C++), WIP
kgpc (Generic Wrapper)

Server

go-kgp (Go)



Concrete KGP Implementations

Client Libraries

jkgp (Java)
pykgp (Python)

libakgp (C/C++), WIP
kgpc (Generic Wrapper)

Server

go-kgp (Go)



Minimal client example using pykgp

from random import choice

import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)



Minimal client example using pykgp

from random import choice

import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)



Minimal client example using pykgp

from random import choice

import kgp

def random_agent(state):

moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)



Minimal client example using pykgp

from random import choice

import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)

yield choice(moves)

kgp.connect(random_agent)



Minimal client example using pykgp

from random import choice
import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)



Tournament Design

Stage 1 Open “training” tournament for student to get a
feeling for how well their agents perform (using
ELO-Ranking)

Stage 2 A closed competition of submitted agents under
fixed conditions for additional credit



Tournament Design

Stage 1 Open “training” tournament for student to get a
feeling for how well their agents perform (using
ELO-Ranking)

Stage 2 A closed competition of submitted agents under
fixed conditions for additional credit



Tournament Design

Stage 1 Open “training” tournament for student to get a
feeling for how well their agents perform (using
ELO-Ranking)

Stage 2 A closed competition of submitted agents under
fixed conditions for additional credit





Expectations and Complications

1. Use a plain TCP
connection for the public
server

 RRZE do not like opening
TCP sockets

→ Tunnel through
Websocket

+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker



Expectations and Complications

1. Use a plain TCP
connection for the public
server

 RRZE do not like opening
TCP sockets

→ Tunnel through
Websocket

+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker



Expectations and Complications

1. Use a plain TCP
connection for the public
server

 RRZE do not like opening
TCP sockets

→ Tunnel through
Websocket

+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker



Expectations and Complications

1. Use a plain TCP
connection for the public
server

 RRZE do not like opening
TCP sockets

→ Tunnel through
Websocket

+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker



Expectations and Complications

1. Use a plain TCP
connection for the public
server

 RRZE do not like opening
TCP sockets

→ Tunnel through
Websocket

+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker



Expectations and Complications

1. Use a plain TCP
connection for the public
server

 RRZE do not like opening
TCP sockets

→ Tunnel through
Websocket

+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker



Expectations and Complications

1. Use a plain TCP
connection for the public
server

 RRZE do not like opening
TCP sockets

→ Tunnel through
Websocket

+ Encryption available “for
free”

2. Just submit “regular”
programmes

 How to compile/interpret
them?

→ Build and run using
Docker



Data, Comments and Future Ideas

I Language Popularity

16 Python
13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python

13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java

1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python

1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python
1 C and Python

1 Kotlin
I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions

I 3 low-effort plagiarism
attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Data, Comments and Future Ideas

I Language Popularity
16 Python
13 Java
1 C++ and Python
1 C and Python
1 Kotlin

I 5 “borked” submissions
I 3 low-effort plagiarism

attempts

I Rethink the “training”
tournament

I Provide ready-to-use
Docker templates

I Implement more libraries



Summarié

The Game of Kalah

kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

A Protocol

from random import choice
import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)

Libraries Tournament



Summarié

The Game of Kalah

kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

A Protocol

from random import choice
import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)

Libraries Tournament



Summarié

The Game of Kalah

kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

A Protocol

from random import choice
import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)

Libraries Tournament



Summarié

The Game of Kalah

kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

A Protocol

from random import choice
import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)

Libraries

Tournament



Summarié

The Game of Kalah

kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

A Protocol

from random import choice
import kgp

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield choice(moves)

kgp.connect(random_agent)

Libraries Tournament


