
On the Designing of a Text Protocol for the Game of Kalah
Philip Kaludercic

philip.kaludercic@fau.de
https://wwwcip.cs.fau.de/~oj14ozun/

September 15, 2022

Abstract
With computers dominating most abstract board
games, the use of a protocols has become common.
This makes comparisons between various implemen-
tations possible, without depending on specific tech-
nologies or programming languages.
This paper reports on the process of developing

a text protocol for the game of “Kalah”, a member
of the “Mancala” together with a technical analy-
sis of a tournament that took place in the context
of the AI1 course (Artificial Intelligence course fo-
cusing on symbolic methods) at the University of
Erlangen–Nuremberg.

Contents
1 Motivations and Values for Game Pro-

tocols 1
1.1 Survey of existing protocols 2

1.1.1 Chess 2
1.1.2 Go (Baduk) 2
1.1.3 General Game Playing 3

1.2 General Considerations 4
1.2.1 The Protocol Syntax 4
1.2.2 Connection Persistence . . . 4
1.2.3 Extensibility 5

2 Design of the KGP Protocol 5
2.1 Background and Context 5
2.2 The Protocol 6

2.2.1 Version Agreement 6
2.2.2 Protocol Modes 6
2.2.3 Command IDs and References 6
2.2.4 The set-Command 7

2.3 Rationale 8

3 Server and Client implementations 8
3.1 Clients 8

3.1.1 Python Client 8
3.1.2 Java Client 9
3.1.3 Wrapper client 9

3.2 Server 9

4 Technical Evaluation of a Tournament 10
4.1 Transport Layer 10
4.2 Authentication 10
4.3 The simple-mode 11
4.4 Evaluation of the Closed Tournament 11

5 Future Thoughts and Plans 11

A The “Kalah Game Protocol” Specifica-
tion 13

1 Motivations and Values for
Game Protocols

In order to provide the greatest freedom while com-
paring the performance of various programs, it is
useful to provide a language agnostic protocol as a
common denominator. The role of the protocol is
to formally specify what input to expect and what
output to produce. This approach isolates the de-
tails of a concrete implementation down to a black
box that only exposes the necessary functionality.
This freedom is of particular interest in com-

petitive situations, where participants should not
be burdened by unnecessary restrictions such as
programming languages or runtime environments,
that might limit or hinder possible implementation
strategies.

In this section we shall begin by considering a few
existing protocols for competitive, abstract games

1

mailto:Philip Kaludercic <philip.kaludercic@fau.de>?subject=[KGP]
https://wwwcip.cs.fau.de/~oj14ozun/

to see what decisions are made, then follow by a
brief abstract analysis of the matter.

1.1 Survey of existing protocols
1.1.1 Chess

Since the triumph of IBM’s Deep Blue AI against
Garry Kasparov in 1997, it has been evident that
in the coming future AI would play a dominant role
in the world of chess. It is at least at this point that
computer-to-computer communication becomes nec-
essary, as the best “players” are all virtual.
In this space there have been two significant at-

tempts: One of the first such examples was the
Chess Engine Communication Proto-
col[13] that began being developed around the
mid 1990s by the maintainers of the GNU XBoard
graphical interface for playing chess. It was initially
designed as a frontend for GNU Chess (the chess
engine implementation by the GNU Project), but
as lead maintainer, Tim Mann explained in an inter-
view[10], the requests of other chess engine develop-
ers to be supported by XBoard too, resulted in an
“extending the ad-hoc engine protocol to support
them”. The consequence of this approach was that
in a matter of only a few years it became obvious
the protocol had to change:

Unfortunately, because the protocol was
never really designed, but just grew out
of documenting the existing communica-
tion with GNU Chess, there are still sev-
eral bugs and deficiencies in it today. It
would be nice to make some major revi-
sions, but then of course it would (at best)
take a long time for the existing engines to
convert over to the new protocol, so both
would have to be supported, probably for-
ever.[10]

This demonstrates the danger of relying too much
the organic growth of a protocol over time. It ap-
pears some conscious, a priori planning is necessary
to avoid these issues like these.

The eventual successor to Chess Engine Commu-
nication Protocol was the Universal Chess
Interface (UCI)[7]. While influenced by the
former, the primary technical advantages over the
previous protocol were changes that improved ro-
bustness. One way this was done was by trying

to make the protocol “stateless”. This means that
messages avoid relying on previous communication
for interpretation. Another significant change was a
general attempt to simplify the “deficiencies” that
the Chess Engine Communication Protocol had suf-
fered from.

UCI, like the Chess Engine Communication Pro-
tocol before it, is a plain-text protocol. That is to
say that each time messages are exchanged, they are
encoded the same way a human would write text in
a plain text file. Take for example this command,
that a user agent (GUI, server, . . .) might send to
a chess engine to the initial position of the board:

position startpos moves e2e4

The chess engine receives this command, parses
and interprets what is to be done, and then proceeds
to await the next command, such as

go movetime 1000

to request a move be calculated given milliseconds
1000 of time to consider. It then responds with a
message such as1

bestmove d7d5 ponder e4d5

Nowadays, UCI is the de facto standard protocol
used by chess engines.

1.1.2 Go (Baduk)

As with Chess, the east-Asian game of Go (other-
wise also known as “Igo”, “Baduk” or “Weiqi”) has
received a lot of attention. It has long been regarded
as a worthwhile vehicle to study adversarial search-
ing and artificial intelligence. All the more so, after
the Deep Blue–Garry Kasparov matches, the repu-
tation of being a stronghold of human intellectual
superiority over the machine was shifted from Chess
to Go.

This was the case until “AlphaGo”[12], a Go pro-
gram by DeepMind, managed to beat Lee Sedol in
2016. At the time he was considered the highest
ranking, professional Go player in the world. It was
at least at this point that having a standardised
means of communicating between programmes was
necessary.

1This response was generated using GNU Chess, Version
6.2.9.

2

As with Chess before, there are two protocols
worthy of notice. The first is the Go Modem
Protocol (GMP)[15]. The details on the exact
history are sparse, and it appears to be displaced
by the simpler Go Text Protocol (GTP)[3],
initially introduced by the GNU Go Project (the
Go engine implementation by the GNU Project)[1,
Section 19].
On a superficial level, these two differ in that

GMP is a “binary” protocol, where singular bits
are used to communicate intent, while GTP is once
again a “plain-text” protocol. As an example, if the
user agent wishes to have the white player place a
stone on the field B1 (the uppermost, second from
the left intersection), GMP specifies that the com-
mand be formatted using only two bytes, here the
binary representation:

1101 0100 1000 0010

while GTP equivalent is written out on a single
line terminated with carriage return and new line
characters:

play white 1B

GTP is obviously more legible and makes debug-
ging easier, yet GMP is not without its advantages.
The immediate one is reduced traffic, as the “lan-
guage” is inherently compressed down to only what
is necessary. Another advantage that is not directly
visible from this example is that despite the terse
communication, provisions have been made for the
possible need to extend the protocol in the future,
while not breaking compatibility with older imple-
mentations (this shall be referred to later as “weak
extensibility”).
Nevertheless, GTP appears to have established

itself as the more popular choice between the two,
which could speak for the inherent advantage of
a plain text protocol over a binary alternative —
especially when the performance advantages make
little to no difference2.
A final feature of GTP worth noting is the

command-response-error structure. This allows for
2An example where the advantage was significant enough

is HTTP. For the first approx. 20 years of the WWW, send-
ing headers as plain text was sufficient, but with the ever-
increasing traffic, HTTP 2.0 and newer switched over to bi-
nary encoding to reduce the amount of transferred data and
accelerate parsing. In modern networks, neither of these is-
sues present themselves as bottlenecks in game protocols like
GTP.

a command to be prefixed with an ID, and later
commands to reference it and either indicate some
success or failure. On this basis asynchronous com-
munication is made easier, as it isn’t necessary to
await a response before sending out a new message.

1.1.3 General Game Playing

A slightly different domain from the previous two
examples is that of General Game Playing
(GGP). This problem involves the attempt to design
an algorithm that can play any game without any
prior knowledge, as long as a declarative, formal
specification can be given [5, p. 1].

One such specification format is the Game De-
scription Language (GDL), developed by
the Stanford Logic Group for “finite, discrete, de-
terministic multi-player games of complete infor-
mation”[8, p. 1]. The specification is written in
Datalog (a subset of Prolog, c.f. [9]) formatted us-
ing Knowledge Interchange Format
(KIF). KIF in turn is a formal language for the “in-
terchange of knowledge among desperate computer
programms”[6, p. 5], that uses S-Expression syn-
tax [5, 7 ff.] (as defined by [11, 186 ff.]). For exam-
ple, the following fragment from [8, p. 18] describe
the legal moves a player may make (symbols begin-
ning with a leading ? are variables, those without
are constants, analogous to upper and lower case
symbols in Prolog respectively):

(<= (legal ?player (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?player)))

(<= (legal x noop)
(true (control o)))

(<= (legal o noop)
(true (control x)))

GDL was explicitly designed for competitions, as
seen by the intended infrastructure that GDL is
employed by. [5, 69 ff.] describes a centralized struc-
ture where a “game manager” (server) takes the role
of an arbiter between multiple “players” (clients).
These communicate via HTTP requests, where a
client first requests to play a game and receives a
GDL specification and a new ID for a match. This
ID is necessary for the game manager to identify
and associate a player with previous requests.

3

The protocol is notably asymmetric, as requires
a centralized network architecture that doesn’t pro-
vision clients to connect directly to one another.
Furthermore, connections can only be initiated by a
“player” towards a “game manager”, not the other
way around.

1.2 General Considerations
The following section will consider both advantages
and disadvantages of various choices a protocol de-
signer makes, in an abstract manner.

1.2.1 The Protocol Syntax

Except for GMP and GDL, each protocol is based
on plain-text, bi-directional line-oriented communi-
cation. That is to say that a command is written
entirely on a single line, and is usually terminated
by either a carriage return and a newline (\r\n in
C notation) or just a newline (\n). This is a popular
approach, not only employed by game protocols, but
by many internet standards such as SMTP, FTP,
IRC or HTTP (up until version 2.0).
As previously discussed, GMP demonstrates an

alternative, namely to interpret messages on a byte-
by-byte basis. This reduces the necessary amount
of traffic, accelerates parsing, but makes it more
difficult to follow along. It appears as though the
disadvantages of this approach outweigh the advan-
tages, as mentioned in footnote 2.

Finally, we see that GDL re-uses the existing syn-
tax of KIF, which in turn is intentionally meant to
be legal Common Lisp syntax. The GDL specifica-
tion explains[8, p. 7]:

In particular, a string of ascii characters
forms a legal expression in [. . .] KIF if and
only if (1) if it is acceptable to the Com-
mon Lisp reader [. . .] and (2) the structure
produced by the Common Lisp reader is a
legal expression of structured KIF

This is particularly convenient for a Common Lisp
programmer, who can just re-use the read (read)3

procedure to parse the input, but acceptable in
other languages as well that can re-use an existing
parser, or if not available have to implement it them-
selves. The same applies to other data interchange

3http://www.lispworks.com/documentation/
HyperSpec/Body/f_rd_rd.htm

formats such as JSON, XML or MessagePack. As
with S-Expressions, one can also claim that each
format has a certain bias towards the cultures that
they emerged from. How good of a choice this ap-
proach is depends on the context and format one is
confronted with.

1.2.2 Connection Persistence

GDL once again distinguishes itself from the other
protocols by not requiring a persistent connection,
whilst simultaneously specifying that HTTP must
be used to share messages.

The Chess Engine Communication Protocol, UCI
and GTP only require a reliable transport layer such
as TCP[2], Unix domain socket or regular IPC
mechanisms (such as Pipes) to exchange messages.
GMP, as the name implies (“Modem”), makes

explicit, low-level assumptions about the manner
clients communicate and what serial ports which
player connects to, see [1, Subsection 3.7]. It is rea-
sonable to assume that requirements like these con-
tributed to the loss of popularity, compared to GTP.
The principal considerations therefore are

whether the abstract laissez-faire approach of UCI
and GTP is preferable to the fixed decisions that
GDL has already made, and what the value of con-
nection persistence is.

One issue that must be considered in practice, is
that when communicating over networks, the first
of L. Peter Deutsch’s Fallacies of distributed com-
puting, stating “The network is reliable”. Any long-
standing connection, even if it relies on TCP or
similar technologies, is prone to sudden and often
not immediately noticed outages. The more com-
plex the network topology, the higher the risk is,
due to more points of possible failure.
On the other hand, if the network is already ex-

periencing issues, the necessity to re-establish new
connection for every message, bundled with the nec-
essary overhead that entails, does not improve the
situation. For both approaches to therefore be equal
in terms of functionality and capabilities, it is nec-
essary for persistent connections to identify them-
selves, as it the case by necessity with non-persistent
protocols.
Otherwise, the inherent freedom to use any reli-

able connection appears preferable, as this allows
for more flexibility to adapt to unforeseen circum-
stances and requirements.

4

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm

1.2.3 Extensibility

Along the same lines, the flexibility of a proto-
col to adapt to changing requirements is desirable.
Lacking this or the capabilities to be updated in a
forward-compatible way, is what lead to the demise
of Chess Engine Communication Protocol and the
rise of UCI.

Though it should be noted that Extensibility is a
double-edged sword. An overemphasis can quickly
become more of a burden by means of fragmentation
than a virtue.

To take an example from a different domain,
Extensible Messaging and Presence
Protocol (XMPP, formerly also known as “Jab-
ber”) is a federated, instant messaging protocol that
enjoyed widespread use and popularity in the mid-
aughts. The protocol is extended through a formal
process, that involves publishing so called “XEP”
(XMPP Extension Protocols) reports. With the rise
of mobile computing these became more and more
important, as the assumptions the early designers
had operated under in the late 1990s were not given
anymore. These changes included that each user
only had one device, that devices might quickly
appear and disappear from the network and that
a persistent connection might require more power
than is acceptable. The attempt was made for to
address these issue and at the same time up up-
date the capabilities of the protocol to satisfy the
new assumptions users had about what an instant
messaging service should provide (multi-user chat
rooms, location sharing, avatars, file uploading, en-
cryption,. . .).

Compared to centralized and commercial alterna-
tives, this process was notably slow, which made the
network less appealing to day-to-day users. More-
over, the fact that multiple XEPs were being pro-
posed to solve the same issues lead to fragmenta-
tion and increased the complexity of implementing
a client or a server. The situation has improved
over the last few years, but remains as an impor-
tant reminder that careless extensibility can harbor.
Nevertheless, one should keep in mind that if it were
not for the flexibility inherent in the protocol, none
of these improvements would have been possible in
the first place.

2 Design of the KGP Protocol
This section will present and attempt to legitimate
the decisions made in designing a protocol for the
abstract board game of “Kalah”. We shall begin
with a presentation of the context and its related re-
quirements. Given this background we will proceed
to a brief overview of the protocol itself and finally
conclude with reflections on the decisions made in
reference to the observations made in section 1.2.

2.1 Background and Context
The interest in a protocol for Kalah stems from
the “Artificial Intelligence 1” course4, held at the
Friedrich-Alexander University in Erlangen. The
course is accompanied by an exercise slot, where
students are given an opportunity to apply their
knowledge in practice. In one particular exercise,
the task is given to implement an agent that is able
to play the abstract board game “Kalah”. Students
can then decide to have their implementations take
participate in a tournament. We will go into the
details of this tournament in section 4.
For the current intent, the rules and detail of

“Kalah” are not relevant. The only important facts
are that it is an abstract, discrete, deterministic,
two-player game, where each player makes a move
that can be described by a bounded number. Fur-
ther details on the game are elaborated in [14].

The proposal to use a protocol was made as a pos-
sible replacement for the previous framework that
was used in the exercise5. The previous framework
was written in Scala, and implementing an agent
involved inheriting and implementing an abstract
base class. This restricted clients to being imple-
mented in JVM-based languages (Scala, Java,. . .)
and reduced the flexibility they had in terms of
initialization. The concrete implementation of the
framework also suffered issues, and could in retro-
spect be argued to have been ill-designed. This be-
came apparent when the Framework was extended
to allow for the agent to “update” their decision,
that is to say if the agent was given 5 seconds to
make a move, they would be able to improve their
decision until the time was up. The issue was that
this was implemented using a shared variable, that

4https://kwarc.info/courses/ai1/
5c.f. https://github.com/KWARC/Kalah-Framework/

issues/7

5

https://kwarc.info/courses/ai1/
https://github.com/KWARC/Kalah-Framework/issues/7
https://github.com/KWARC/Kalah-Framework/issues/7

was set directly and was prone to concurrency issues
if an agent decided to start more than one thread.
A protocol would solve issues like these by de-

coupling the specific details of how client is imple-
mented (language, execution method, . . .) from the
framework. This is possible if a well-defined com-
munication interface does is designed to consciously
avoid any assumptions on how a client — or a server
— is implemented.

At the same time it must be kept in mind that the
course is focused on artificial intelligence, not sys-
tems programming, network communication or the
issues of parsing and interpreting a language. The
protocol must hence strike a balance between en-
suring flexibility for the creative and eager students,
without overburdening or annoying the others.

2.2 The Protocol
The protocol was designed in private correspon-
dence between Tobias Völk and myself from Jan-
uary 2021 until November of the same year. The
results were formalized in a specification, which is
reproduced in appendix A. It was given the name
“Kalah Game Protocol” (KGP).

KGP is a line-oriented, plain-text protocol, com-
parable to UCI and GTP. The communication is
asymmetrical, and it is expected that clients connect
to a common, well-known server. It is therefore only
necessary for an agent to implement the client-side
part of the protocol. This fact is used to leverage
complexity towards the server whenever possible, so
that implementing an agent can be kept as simple
as possible.

2.2.1 Version Agreement

After a client has established a connection to a
server, by whatever means available, the server sends
out a single line establishing the protocol and the
current revision of the protocol

kgp 1 0 0

The three arguments to the command kgp are
the major, minor and patch versions. These indi-
cate backwards-incompatible, forward-compatible
and simple bug fixing changes respectively, a prac-
tice adapted from “semantic versioning”.

If the client is not familiar with the stated itera-
tion of the protocol, it is expected to not proceed
any further and terminate the connection.

2.2.2 Protocol Modes

Otherwise the client may respond by signalling what
functionality it is interested in. This is done by re-
questing an protocol “mode”. As of writing, the
main such mode is called freeplay. The client
would request it as follows:
mode freeplay

Having selected this specific mode, the client will be
sent a series of challenges that it should respond to.
Each challenge consists of a state of the board, that
is not required to bear any relation to any previous
challenge
state <3,1,3,0,4,4,4,3,3>

The client responds by sending a move-command
with one numerical argument, indicating the move
it believes should be made:
mode 2

The client is allowed to update this decision as often
as it wants, up until the server sends out a
stop

command. Any update received after this point is
silently ignored. The stop-command is usually sent
out when the time allotted for a decision to be made
has run out. If the client is interested in moving
things ahead more quickly, it may indicate that it
does not intend to change its mind by sending out
yield

after which another state request may be issues.
This cycle has been summarized in figure 1.

2.2.3 Command IDs and References

It is specified that in freeplay-mode the server is
allowed to send out as many state-commands as it
decides to. For this to work, the client must be able
to make explicit state-command it is referring to
when responding.

This is done by an optional system of command
IDs and command references. Each command may
be prefixed with neither, either nor both, as seen in
the following examples:

6

kgp 1 0 0

mode freeplay mode foo

. . .

mode bar

. . .

state <...>

move n stop

yield goodbye

Figure 1: State-diagram of freeplay. The dashed boxes indicate messages sent out by the server, the
non-dashed boxes indicate messages sent out by the client.

1 foo
@2 bar
3@1 baz

The command foo has the ID 1, bar refers to some
command with the ID 2 and baz has the ID 3 while
referring to the command with the ID 1 (foo).
The semantics of a valid reference is up to the

active mode. “Valid” means that there exists an un-
ambiguous reference between a unique and actually
existing command with some ID i and a subsequent
command that refers to i.

As implied above, in freeplay references are used
to avoid concurrency issues w.r.t. move, yield and
stop when dealing with multiple concurrent state-
queries. That being said, it is also useful, even if
the server does not intend to send out concurrent
state-queries, as it prevents race conditions when
the server decides to stop a state-request and im-
mediately sends out a new one, while the client sends
a move command. Without a proper reference, the
server wouldn’t be able to decide with certainty if
the move command was supposed to refer to the pre-
vious or the current state request. In this worse
case this might lead to an unintentional move being
made. Due to network lag, this issue arises more
often than one would expect.

2.2.4 The set-Command

As argued in section 1.2.3, it is inherently preferable
to have a flexible and forward-compatible protocol.
The lack of flexibility to address changing require-
ments will inevitably doom a system to a premature
death.
Yet reliance on too much flexibility may lead to

fragmentation and make implementing a protocol
more complicated than need be the case.

The approach taken by KGP was previously men-
tioned under the term “weak extensibility”. In our
context this will specifically mean that both client
and server can send messages, that can, but explic-
itly must not be handled by the respective opposite
side. That is to say that none of the core function-
ality of a mode may suffer from either side not sup-
porting the “weakly” extended part of the protocol.

This approach is done by introducing a separate
command called set. Superficially it is intended to
communicate a shared state, such as when the client
intends to inform the server of the author’s name or
when the server wants to make clear what the name
of the implementation is. The former example may
look like this:

set info:author "John Doe"

The command takes two arguments, an option
name and a value. All option names are delimited

7

by a colon (:) that separate the actual option name
from the “group” it is part of. The specification
currently defines three such groups (info, time and
auth). The intention is that while handling each
group is optional, an implementation is urged to
support all options in a group.

2.3 Rationale
As mention at the beginning of the section, we would
like to reflect upon the sketch of the protocol out-
lined in section 2.2 with the considerations elabo-
rated in section 1.2.
The syntax follows the traditional convention

of game protocols, in being plain-text and line-
oriented. This decision was mainly made to avoid
a dependence on an external parser or the need for
students to implement one themselves, in addition
to the protocol logic.

This point could be contended: Depending on the
serialization format, most languages either provide
libraries in their standard library or as packages
that are distributed in some repository. The issue
here is that no matter what format one decides to
use (XML, JSON, S-Expressions,. . .), one would al-
ways disadvantage some language that either has no
support in the standard library or makes bundling
and distributing dependencies cumbersome.
Meanwhile, the entire syntax that KGP uses for

freeplay could be parsed using a single regular
expression.
On the question of connection-persistence, it

might seem as though the decision has been made
to make KGP connections persistent. This is not
necessarily the case, but is instead a specific feature
of the freeplay-mode. It is imaginable to have a
separate mode for non-persistent connections:

kgp 1 0 0
mode oneshot
id 782593
state <3,1,3,0,4,4,4,3,3>
move 2
[End of connection]

where id would be a client-side command that iden-
tifies the agent in a game. If the need arose, the
protocol specification could be updated to add sup-
port for such a mode, while at the same time a
server would retain support for both freeplay and
the hypothetical “oneshot” mode.

For now, it appears as though the persistent
freeplay-mode is sufficiently well suited for the
needs of KGP. One major advantage of a persistent
connection is that it does a better job of abstracting
away the transport layer. One can write a client by
just operating on the standard output and input,
then use a utility like Netcat to wrap the I/O and
connect to a server that may accept connections
using TCP. Similar tools exist for other transport
layers such as WebSocket.

To summarize: The core protocol consists of give
commands (kgp, mode, set, ok, used for generic con-
firmations, and goodbye). Functionality can be ex-
tended in two dimensions, either by defining a new
mode or by defining a new command group.
It is the contention of the KGP developers that

the protocol manages to find a successful and satisfy-
ing compromise between these opposing priorities.

3 Server and Client implemen-
tations

On a technical level it might be possible to require
all participants in the tournament to implement
their own protocol clients, but considering the dis-
proportional popularity of certain languages (e.g.
Python, Java), it makes sense to provide KGP client-
libraries for these languages.

In this section we will comment on both the cur-
rently available clients and the server used in the
tournament.

3.1 Clients
As of writing, there exist three client implementa-
tions: Two libraries for Python, Java and a program
that simplifies implementing a client in a custom
language.

3.1.1 Python Client

A rather straightforward implementation of KGP
client-side protocol is the python client, simply
called pykgp. It is distributed in a single file and is
distributed in the KWARC KGP repository6.

The source code for a simple client is given in fig-
ure 2. This is under the assumption that the library

6https://github.com/KWARC/kalah-game/

8

https://github.com/KWARC/kalah-game/

import kgp
import random

def random_agent(state):
moves = state.legal_moves(kgp.SOUTH)
yield random.choice(moves)

kgp.connect(random_agent)

Figure 2: A minimal, random-move client written
in Python.

file (kgp.py) is in either the Python library path or
in the current working directory.

The library implements freeplay-mode for both
TCP and WebSocket connections. For each state-
command is handled using the multiprocessing
module, that is to say that a new process is spawned
and killed as soon as the query is aborted via a stop-
command.

3.1.2 Java Client

The Java library was principally designed and im-
plemented by Tobias Völk, a fellow student at the
FAU. It is called jkgp and is distributed using a
.jar archive.
Just like with Python, it implements the

freeplay mode. Instead of handling each request
in a separate process, jkgp does so using sepa-
rate threads. Among other things, this also implies
that due to Java’s threading model a thread can-
not be terminated from outside its own execution.
Instead, the agent is required to manually check if
a stop-command has been received and terminate
the thread when it chooses to do so.

3.1.3 Wrapper client

A different approach to the previous libraries is a
client that further simplifies the process of using
whatever language one may be interested in. The
standalone client, called kgpc, might be started like
in the following:

$./kgpc my-client some-server.net:2671

where my-client is an executable file and
some-server.net would be serving a KGP service
on the port 2671.
Instead of, as in the previous examples, imple-

menting KGP from the bottom up, starting from a
transport layer like TCP or WebSockets, a generic
client would wrap an executable. Similarly to pykgp,
each state-command would have a new process cre-
ated and then execute the executable with is passed
as a command line argument. This new process
would then receive a board state via the standard
input,

3
1 3
0 4 4
4 3 3

and kgpc would expect a response via the standard
output:

2

When the time has run out (as indicated by a
stop-command) the child process would be killed.
This client, called kgpc was implemented in Go.

3.2 Server
There currently exists only one serious server imple-
mentation, called go-kgp. As the name implies, it
was written using the Go Programming Language.
Like all the above, the source code is also distributed
in the KWARC repository.
The server has two operational modes, the first

just listening for incoming connections and then
starting games with whatever clients are available.
If clients authenticate themselves (this is done by
setting the auth:token variable, see section 4.2),
the performance of agents is kept track of in a score-
board.
The second mode provides a controlled “tour-

nament” environment, where instead of providing
a public service that anyone may connect to, the
server manages the clients directly. A client can be
configured to be isolated within a container, thus
also allowing the resources to be limited. Internally
this mode is referred to “Kalahseum”.

Go-kgp uses SQLite to store all the data gener-
ated during matches.

Currently the server still has potential of being im-
proved and stabilized. In particular the latter mode

9

still suffers from difficulties with certain isolation
mechanisms like Docker.
It would be desirable to have multiple server

implementation in the long term, perhaps even
splitting the two operational modes into separate
projects.

4 Technical Evaluation of a
Tournament

This section will recapitulate the development and
execution of the first KGP-based tournament that
took place in the winter semester of 2021 at the
Friedrich-Alexander University (FAU) in Erlangen.
With the server ready and client libraries avail-

able, the tournament began on 2021-12-02. The
tournament was divided into two stages

Open, Training Tournament Up until the sub-
mission deadline (2022-01-09) a publicly acces-
sible server was provided for clients to connect
too anonymously. If the students want to add
a pseudo-anonymous nickname to their client,
they could do so too. This server would ran-
domly associate waiting clients and have them
play a match between themselves.
The result of this match would be noted and
an ELO score would be updated on a public
scoreboard. The placement in this scoreboard
had no effect on the final grade.

Closed, Tournament After the submission dead-
line, the second phase of the tournament was
initiated where all submitted agent implemen-
tations were pitted against one another in con-
trolled, isolated environments with the same
available resources (CPU cores, memory, stor-
age). The tournament would then take place
in multiple rounds, simultaneously eliminating
those agents that performed less well and in-
creasing the complexity of the game.
All agents that managed to pass a “smoke test”
involving a game with a random client, received
100 points, and the top 10 participants received
100 points, 90 points, 80 points, etc. respec-
tively. The points allotted in this tournament
were bonus points for the course exercise, that
in turn entitled the student to bonus points in
the final exam.

This division mirrors the operational modes de-
scribed in section 3.2.

The open tournament phase was useful to detect
bugs in both jkgp, pykpg and the server and have
them fixed in time for the closed tournament.

4.1 Transport Layer
Prior to this, an initial version of go-kgp had been
developed as a proof of concept for concept of using
a protocol instead of a single-language framework as
described in section 2.1. This version had initially
only support for TCP connections. After discussions
with the KWARC team (in particular Tom Wiesing)
it was concluded that TCP could not be used, since
the university network and its administrators had
made it difficult to open a regular port. As an alter-
native, it was decided to use WebSocket Protocol [4],
that allows for reliable, bidirectional communication
on top of HTTP. The cost was a complication in
both the client libraries and the server, the advan-
tage is that communication via WebSockets can
make use of HTTPS and thus provide encrypted
connections.

4.2 Authentication
Around this time an ongoing discussion was that
of authentication. While KGP is inherently anony-
mous, tracking agent identities was of use for
the open tournament mode, so that a scoreboard
could be created. The considered two options were
“challenge-” or “token based” authentication.

The former would involve a cryptographic chal-
lenge, to prove that a client has access to a secret.
Assuming the client were to provide an ID (which
might be equal or derived from a public key)

set auth:id "3d2ac57e788abf"

the server would respond with a challenge:

set auto:challenge "7687fee867bdad"

to which the client would have to provide the right
response:

set auto:response "44d12a26ee3dbb"

Only if these actions are preformed in this order,
and the server is satisfied by the result, would the
connection reliably associated with an ID.

10

Implementation Count
Python 16
Java 13

C++ and Python 1
C and Python 1

Kotlin 1

Table 1: Number of concrete implementations per
programming language

Token based authentication is, compared to the
previous suggestion a simple affair, in that all it
requires is that the client sends the server a secret:

set auth:token "Any string you like."

Anyone who provides the same token is assumed to
be the same entity. Of course, for this to be secure,
one would have to rely on the connection being
secure.

As authentication was only of interest for the pub-
lic server, that relies on of an encrypted WebSocket
connection as discussed above, the latter method
was chosen for the sake of simplicity, and to avoid
having to make the students have to “roll their own
crypo”.

4.3 The simple-mode
During the developmental phase, a second protocol
mode was specified and initially implemented by
both jkgp and go-ktp. The mode was a variation
on freeplay and was given the name simple. It
was meant to avoid the use of reference numbers
by requiring each stop to be confirmed by a yield
response. The server would keep track of the differ-
ence and only accept a move if the difference was
0. If the difference was positive (outstanding yield,
at least once stop was sent out but fewer yields
were received), any response would be ignored. If
negative, the connection would be terminated as the
client would be regarded to have entered an illegal
state. Due to its nature, simple mode could only be
used to play one game at a time.

It was concluded that despite the name, simple-
mode was more complicated that freeplay. The
advantage of not having to track command IDs and
references was relatively marginal. It is therefore
planned to deprecate the mode in the future.

4.4 Evaluation of the Closed Tourna-
ment

For the closed tournament, there were some initial
difficulties with making sure that each submitted
client could be built and managed by the server.
These had to be resolved on an individual basis. In
table 1 an overview is given of how common different
languages were. As can be seen, in most cases ei-
ther pykgp or jkgp was used, where in one case jkgp
was used together with Kotlin, an alternative JVM-
based language. There were two attempts at imple-
menting the performance-critical components of an
agent in C and C++. These did not re-implement
the protocol from the ground up, instead relying on
pykgp by invoking the C components via a Python
shim.
There were a number of submissions that could

not be fixed or were not prepared properly. In a
few cases there appeared to be a misunderstanding,
with programs being submitted that had no relation
to KGP. Instead, these just implemented Kalah as
a standalone library or application.
In other cases the programs were submitted

with invalid Docker specifications (Dockerfile),
and could thus not be tested. A few plagiarisms
were detected which were disqualified..

Setting aside these unfortunate cases, the project
was successfully executed, in both the open and
close phase. KGP should be able to serve as a flexi-
ble and powerful basis for future tournaments.

5 Future Thoughts and Plans
While the organization of the tournament may be
regarded as a success, there remain issues we ob-
served that ought to be addressed and ideas that
have become apparent in retrospect that deserve
further thought. In this section, we would like to
conclude this report by dwelling on these points to
improve future tournaments using the Kalah Game
Protocol.

A few points of consideration would include:

• Providing more libraries for multiple languages.
Languages of interest might be C/C++, Prolog,
Common Lisp, Rust and/or Julia.

• Improving the specification to address under-
specified parts of the protocol. Issues that

11

should be considered could be setting a maxi-
mum line length, what encoding the protocol
should use and error handling.

• The “open tournament” server should be im-
proved in the amount of information it has to
offer, and the methodology used in scoreboard
system.
The current system makes use of the ELO rat-
ing system. Paring was done by having agents
of similar scores compete with one another.
This system would work optimally if all agents
were active at all times. As this is not a legit-
imate assumption, the rating and pairing sys-
tem should accommodate this fact.

• To avoid issues that might arise during the
submission phase, all libraries should be dis-
tributed within ready-made templates that
would include Dockerfiles. These would be
directly suited for development and could con-
tain instructions and utility scripts for testing
and preparing a submission.

• Rating winners in multiple disciplines, besides
just “overall performance”. This might include
speed, the ability to deal with difficult edge-
cases or resource efficiency.

12

Bibliography

References
[1] Daniel Bump, Gunnar Farneback, and Arend

Bayer. GNU Go Documentation. 2009.
[2] W Eddy. “RFC 9293 Transmission Control

Protocol (TCP)”. In: (2022).
[3] Gunnar Farnebäck. Specification of the Go

Text Protocol, version 2, draft 2. 2002.
[4] Ian Fette and Alexey Melnikov. The websocket

protocol. Tech. rep. 2011.
[5] Michael Genesereth, Nathaniel Love, and Bar-

ney Pell. “General game playing: Overview of
the AAAI competition”. In: AI magazine 26.2
(2005), pp. 62–62.

[6] Michael R Genesereth, Richard E Fikes, et
al. “Knowledge interchange format-version
3.0: reference manual”. In: (1992).

[7] Stefan-Meyer Kahlen. Description of the uni-
versal chess interface. Apr. 2004. url: http:
//wbec-ridderkerk.nl/html/UCIProtocol.
html.

[8] Nathaniel Love et al. General Game Play-
ing: Game Description Language Specifica-
tion. Tech. rep. Stanford University, 353 Serra
Mall, Stanford, CA 94305: Stanford Logic
Group, 2008.

[9] David Maier et al. “Datalog: concepts, his-
tory, and outlook”. In: Declarative Logic Pro-
gramming: Theory, Systems, and Applications.
2018, pp. 3–100.

[10] Tim Mann. Frank Quisinsky interviews Tim
Mann about XBoard and WinBoard. 2000.
url: https : / / tim - mann . org / history .
htmlpr.

[11] John McCarthy. “Recursive functions of sym-
bolic expressions and their computation by
machine, part I”. In: Communications of the
ACM 3.4 (1960), pp. 184–195.

[12] David Silver et al. “Mastering the game of Go
with deep neural networks and tree search”.
In: nature 529.7587 (2016), pp. 484–489.

[13] H.G.Muller Tim Mann. Chess Engine Com-
munication Protocol. url: https : / / www .
gnu.org/software/xboard/engine- intf.
html.

[14] Tobias Völk. “Evaluation of Performance and
Techniques used in Kalah Competition”. In:
(2022).

[15] Bruce Wilcox. Standard Go Modem Protocol
- Revision 1.0.

A The “Kalah Game Protocol”
Specification

The following pages include a copy of the current
state of the KGP specification (Version 1.0.0), ref-
ereed to throughout this document.

As mentioned in section 5, there are still ambigu-
ities that ought to be clarified.

13

http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://wbec-ridderkerk.nl/html/UCIProtocol.html
https://tim-mann.org/history.htmlpr
https://tim-mann.org/history.htmlpr
https://www.gnu.org/software/xboard/engine-intf.html
https://www.gnu.org/software/xboard/engine-intf.html
https://www.gnu.org/software/xboard/engine-intf.html

Kalah Game Protocol
Kaludercic, Philip Völk, Tobias

Abstract
This document specifies a protocol for playing the
game Kalah, a member of the Mancala family. It
has been designed to be modularized, so that not
all implementations have to implement all features.
The main modules presented here are freeplay, eval-
uation and validation.

This document specified version 1.0.0 of the KGP
protocol.

Contents
1 Prelude 1

1.1 Definitions 1
1.2 Formal Structure 1
1.3 Protocol Overview 2

2 Defaut Modes 2
2.1 Freeplay Mode 3

3 Freeplay commands 3

4 Simple Mode 3
4.1 Simple commands 3
4.2 Examples 4
4.3 Evaluation Mode 4
4.4 Evaluation commands 4

5 Responses 4

6 The set Command 4
6.1 info-group 5
6.2 time-group 5
6.3 auth-group 5

7 Notes 5

8 Distribution of This Document 5

1 Prelude
The key words “MUST”, “MUST NOT”, “RE-
QUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “NOT
RECOMMENDED”, “MAY”, and “OPTIONAL”
in this document are to be interpreted as described
in BCP 14 [RFC2119] [RFC8174] when, and only
when, they appear in all capitals, as shown here.

1.1 Definitions
A server organizes activities between one or more
clients. The server waits for clients to request an
activity, that the server may or may not organize.
Activities cannot be changed, after they have been
requested.

The server and the client communicate using a text-
based, line-oriented protocol, over a reliable, ordered
and error-checked transport layer (e.g. TCP).

1.2 Formal Structure
The protocol consists of commands sent between
client and server. Server-to-client and client-to-
server commands have the same form, consisting
of:

• Optional, unique command ID. Client and
server MUST ensure that no ID is reused.

• Optional command reference (addressing a pre-
vious command ID). The client MAY NOT
reference a non-existing command ID.

• A command name
• A number of arguments

The ABNF representation of a command is as fol-
lows:

command = id name *(*1WSP argument) CRLF
id = [[*1DIGIT] [ref] *1WSP]
ref = ["@" *1DIGIT]
name = *1(DIGIT / ALPHA)

1

argument = integer / real / word
/ string / board

integer = [("+" / "-")] *1DIGIT
real = [("+" / "-")] *DIGIT "." *1DIGIT
word = *1(DIGIT / ALPHA / "-" / ":")
string = DQUOTE scontent DQUOTE
scontent = *("\" CHAR / NDQCHAR)
board = "<" *1DIGIT *("," *1DIGIT) ">"

where NDQCHAR is every CHAR except for double
quotes, backslashes and line breaks. Each command
MUST at most be most 16384 characters long, in-
cluding trailing white space. Any line beyond that
MAY be ignored by a server.

An argument has a statically identifiable type, and
is either an integer (32, +0, -100, . . .), a real-
valued number (0.0, +3.141, -.123, . . .), a string
(single-word, "with double quotes", "like \"
this", . . .) or a board literal.

Board literals are wrapped in angled-brackets and
consist of a an array of positive, unsigned integers
separated using commas. The first number indicates
the board size n, the second and third give the
number of stones in the south and north Kalah
respectively. Values 4 to 4 + n list the number of
stones in the south pits, 4 + n + 1 to 4 + 2n + 1 the
number of stones in the north pits:

<3,10,2,1,2,3,4,2,0>
^ ^ ^ ^ ^
| | | | |
| | | | __ North pits: 4, 2 and 0
| | | ________ South pits: 2, 1 and 3
| | __________ North Kalah
| _____________ South Kalah
_______________ Board Size

1.3 Protocol Overview
The communication MUST begin by the server send-
ing the client a kgp command, with three arguments
indicating the major, minor and patch version of
the implemented protocol, e.g.:

kgp 1 0 0

The client MUST parse this command and that it
implements everything that is necessary to com-
municate. The major version indicates backwards
incompatible changes, the minor version indicates

forwards incompatible changes and the patch ver-
sion indicates minor changes. A client MAY only
check the major version to ensure compatibility, and
MUST check the minor and patch version to ensure
availability of later improvements to the protocol.

The client MUST eventually proceed to respond
with a mode command, indicating the activity it is
interested in. The mode command is REQUIRED
to have one string-argument, indicating the activity.

mode freeplay

In case the server doesn’t recognize or support the
requested activity, it MUST immediately indicate
an error and close the connection:

error "Unsupported activity"
goodbye

The detail of how the protocol continues depends on
the chosen activity. The server SHOULD terminate
the connection with a goodbye command.

After the connection has been established and ver-
sion compatibility has been ensured, the server MAY
send a ping command. The client MUST answer
with pong, and SHOULD do so as quickly as possi-
ble. In absence of a response, the server SHOULD
terminate the connection.

Both client and server MAY send set commands
give the other party hints. Both client and server
SHOULD try to handle these, but MUST NOT
terminate the connection because of an unknown
option. Version commands indicating capabilities
and requests SHOULD be handled between the ver-
sion compatibility is ensured (kgp) and the activity
request (mode).

Any command (client or server) MAY be referenced
by a response command: ok for confirmations and
error for to indicate an illegal state or data. All
three MUST give a semantically-opaque string ar-
gument. The interpretation of a response depends
on the mode.

2 Defaut Modes
The following sections shall specify modes (“activ-
ities”) that a client SHOULD be able to request
from any server. Further modes MAY be supported,
but they are not specified here.

2

2.1 Freeplay Mode
The “freeplay” involves the server sending the client
a sequence of board states (state) that the client
can respond to (move). The server MAY restrict the
time a client has to respond (stop), that the client
MAY also give up by their own accord (yield).
IDs and references SHOULD be used to ensure
the correct and unambitious association between
requests and answers.

A server might use the freeplay mode to implement
a tournament, as seen in this example:

s: kgp 1 0 0
c: mode freeplay
s: 4 state <3,0,0,3,3,3,3,3,3>
c: @4 move 1
s: 6@4 stop
s: 8 state <3,1,3,0,4,4,4,3,3>
c: @8 move 3
c: @8 move 2
c: @8 yield
s: 10@8 stop
...

Where s: are commands sent out by the server,
and c: by the client.

There are no requirements on how a server is to
send out state-requests and on how long the client
is given to respond.

3 Freeplay commands
The following commands must be understood for a
client to implement the “freeplay” mode:

state [board] (server) Sends the client a board
state to work on. The command SHOULD have
an ID so that later move, yield and stop com-
mands can safely reference the request they are
responding to, without interfering with other
concurrent requests.

The client always interprets the request as making
the move as the “south” player.

move [integer] (client) In response to a state
command, the client informs the server of their
preliminary decision. Multiple move commands
can be sent out, iteratively improving over the
previous decision.

An integer n designates the n’th pit, that is to say
uses 1-based numbering. The value must be in
between 1 ≤ n < s, where s is the board size.

stop (server) An indication by the server that it
is not interested in any more move commands
for some state request. Any move command
sent out after a stop MUST be silently ignored.

If the client has not sent a move command, the server
MUST make a random decision for the client.

yield (client) The voluntary indication by a client
that the last move command was the best it
could decide, and that it will not be responding
to the referenced state command any more.
The client sending a yield command is analo-
gous to a server sending stop.

4 Simple Mode
The “simple” mode restricts “freeplay” by introduc-
ing a more strict state model, thus relieving both
client and server from having to track IDs. The
main intention is to make client implementations
easier, by shifting the burden of synchronisation
management on to the server.

As such “simple” mode is convenient for implement-
ing tournaments agents.

4.1 Simple commands
state [board] / stop (server) The server

MUST alternate state and stop commands
(possibly, with other commands inbetween of
course), starting with a state command.

yield (client) The client MUST send yield after
it has finished searching, no matter the reason.
The client MUST not send yield in any other
situation.

There are three cases:

• The server sends stop, the client replies with
yield

• The client sends yield, the server replies with
stop

• The client sends yield “at the same time” as
the server sends stop, neither replies to the
other (they already did)

3

4.2 Examples
Example of a slow client (unrealistically short
game):

s: kgp 1 0 0
c: mode simple
s: state <4,0,0,3,0,0,0,1,1,1,1>
c: move 1
s: stop
s: state <3,1,0,0,4,4,3,3,3>
c: move 1
c: move 1
c: yield
c: move 2
c: move 4
c: move 3
s: stop
c: mode 4
c: yield
s: goodbye

In this example the client did not realize the search
period was ended and keeps sending moves for the
old state even though the server has (rightfully so)
already sent the next state query.

Example of an impatient server/slow client (unreal-
istically short game):

s: kgp 1 0 0
c: mode simple
s: state <...>
s: stop
s: state <...>
s: stop
s: state <...>
s: stop
c: yield
c: yield
c: yield
s: state <...>
s: stop
c: move 1
s: state <...>
s: stop
s: state <...>
s: stop
c: yield
c: move 2
c: move 2
c: yield

c: move 3
c: yield
s: goodbye

4.3 Evaluation Mode
The “evaluation” mode involves the client giving
numerical evaluations for given states. An evalua-
tion is a real-valued number, without any specified
meaning. The client SHOULD be consistent in
evaluating states (the same board should be ap-
proximately equal, a board with a better chance of
winning should have a better score, . . .).

After requesting the mode with

mode eval

the server may immediately start by sending state
commands as specified for the “freeplay” mode.

4.4 Evaluation commands
state [board] (server) See “Freeplay com-

mands”. The server MUST send a command
ID.

eval [real] (client) The client MUST reference
the ID of the state command it is evaluating.
Multiple commands can be sent out in reference
to one state request.

stop (client) See “Freeplay commands”. The
server MUST use a command reference. The
client SHOULD stop responding to the refer-
enced state request.

5 Responses

6 The set Command
The set command may be used at any time by
both client and server to inform the other side about
capabilities, internal states, rules, etc. The structure
of a set command is

set [option] [value]

Each option is structured using colons (:) to group
commands together. Each command group specified
here SHOULD be implemented entirely by both
client and server:

4

6.1 info-group
On connecting, server and client may inform each
other about each other. The options of this group
are:

info:name (string) The codename of the client or
the server.

info:authors (string) Authors who wrote the
client

info:description (string) A brief description of
the client’s algorithm.

info:comment (string) Comment of the client
about the current game state and it’s chosen
move. Might contain (depending on the algo-
rithm), number of nodes, search depth, evalua-
tion, . . .

6.2 time-group
For “freeplay” and especially “simple”, the server
may indicate how it manages the time a client is
given. The options of this group are:

time:mode (word) One of none when no time is
tracked, absolute if the client is given an abso-
lute amount of time it may use and relative if
the time used by a client for one state request
has no effect on the time that may be used for
other requests.

time:clock (integer) Number of seconds a client
has left. This option MAY be set by the server
before issuing a state command.

time:opclock (integer) Number of seconds an
opponent has left.

6.3 auth-group
In cases where an identity has to be preserved over
multiple connections (a tournament or other com-
petitions), some kind of authentication is required.
The auth group consists of a single variable to im-
plement this as simply as possible:

auth:token (string) As soon as the client sends
sets this option, the server will associate the
current client with any previous client that
has used the same token. No registration is

necessary, and the server MAY decide to abort
the connection if the token is not secure enough.

The value of the token must be a non-empty string.

The client SHOULD use an encrypted connection
when using the auth group, as to avoid MITM
attacks. The server MUST NOT reject connections
that do not set auth:token.

7 Notes
This section is non-normative.

The intention of the KGP protocol is to provide a
simple, extensible yet forward compatible to imple-
ment language for AI applications.

8 Distribution of This Docu-
ment

This work is licensed under Attribution-
NoDerivatives 4.0 International. To
view a copy of this license, visit h t t p s :
//creativecommons.org/licenses/by-nd/4.0.

5

	Motivations and Values for Game Protocols
	Survey of existing protocols
	Chess
	Go (Baduk)
	General Game Playing

	General Considerations
	The Protocol Syntax
	Connection Persistence
	Extensibility

	Design of the KGP Protocol
	Background and Context
	The Protocol
	Version Agreement
	Protocol Modes
	Command IDs and References
	The set-Command

	Rationale

	Server and Client implementations
	Clients
	Python Client
	Java Client
	Wrapper client

	Server

	Technical Evaluation of a Tournament
	Transport Layer
	Authentication
	The simple-mode
	Evaluation of the Closed Tournament

	Future Thoughts and Plans
	The ``Kalah Game Protocol'' Specification

