
Ultimate Haskell Cheat Sheet

Structure

func :: type -> type

func x = expr

fung :: type -> [type] -> type

fung x xs = expr

main = do code

code

...

Function Application

f x y (f x) y

f x y z ((f x) y) z

f g $ h x f g (h x)

f $ g x y f (g x y)

f $ g $ h x f (g (h x))

(f . g . h) x f (g (h x))

Binding Types

has type expr :: type

boolean True || False :: Bool

character ’a’ :: Char

fixed-precision integer 1 :: Int

integer (arbitrary sz.) 31337 :: Integer

31337^10 :: Integer

single precision float 1.2 :: Float

double precision float 1.2 :: Double

list [] :: [a]

[’a’,’b’,’c’] :: [Char]

"abc" :: [Char]

[[1,2],[3,4]] :: [[Integer]]

tuple (1,2) :: (Int,Int)

([1,2],’a’) :: ([Int],Char)

string "asdf" :: String

functions foo :: a -> a

double :: Int -> Int

Binding Classes (Typeclasses)

Numeric (+,-,*,/) 137 :: Num a => a

Floating 1.2 :: Floating a => a

Fractional 1.2 :: Fractional a => a

Equatable (==) ’a’ :: Eq a => a

Ordered (<=, >=, >,<) 731 :: Ord a => a

sort :: Ord a => [a] -> [a]

Bounded (minBound,maxBound) minBound :: Int

Declaring Types and Classes

type synonym type MyType = Type

type UserId = Integer

type UserName = String

type User = (UserId,UserName)

type UserList = [User]

data (single constructor) data MyData = MyData Type Type Type

deriving (Class,Class)

data (multi constructor) data MyData = Simple Type |

Duple Type Type |

Nople

typeclass class MyClass a where

foo :: a -> a -> b

goo :: a -> a

...

Operators (grouped by precedence)

List index, function composition !!, .

raise to: Non-neg. Int, Int, Float ^, ^^, **

multiplication, fractional division *, /

integral division (⇒ −∞), modulus ‘div‘, ‘mod‘

integral quotient (⇒ 0), remainder ‘quot‘, ‘rem‘

addition, subtraction +, -

list construction, append lists :, ++

list difference \\

comparisons: >, >=, <, <=, ==, /=

list membership ‘elem‘, ‘notElem‘

boolean and &&

boolean or ||

sequencing: bind and then >>=, >>

application, strict apl., sequencing $, $!, seq

NOTE: Highest precedence (first line) is 9, lowest precedence is 0.
Those aligned to the right are right associative, all others left associa-
tive: except comparisons, list membership and list difference which are
non-associative. Default is infixl 9.

Defining fixity

non associative fixity infix 0-9 ‘op‘

left associative fixity infixl 0-9 +--+

right associative fixity infixr 0-9 -!-

default, implied when no fixity given infixl 9

Functions ≡ Infix operators

f a b a ‘f‘ b

a + b (+) a b

(a +) b ((+) a) b

(+ b) a (\x -> ((+) x b)) a

Common functions

Lists (and Strings (which are lists...))

head / first element of xs head xs

tail (rest) of xs tail xs

elements of xs except last init xs

first n elements of xs take n xs

excludes first n elements of xs drop n xs

checks for x in xs x ‘elem‘ xs

is xs null/empty? null xs

size / length of xs length xs

invert / reverse of xs reverse xs

sorts xs sort xs

pairs (x,y) from xs and ys zip xs ys

infinite repetition of xs cycle xs

and of booleans in xs and xs

or of booleans in xs or xs

sum of numbers in xs sum xs

product of numbers in xs product xs

concatenates list of lists xs concat xs

largest element in xs maximum xs

smallest element in xs minimum xs

Tuples

first of pair p fst p

second of pair p snd p

swap pair p swap p

Higher-order / Functors

apply f to each x in xs map f xs

fold - (z ‘f‘ left) ‘to‘ right foldl f z xs

:: (a -> b -> a) -> a -> [b] -> a

fold - right ‘to‘ (left ‘f‘ z) foldr f z xs

:: (a -> b -> b) -> b -> [a] -> b

filter all xs satisfying p xs filter p xs

IO – Must be “inside” the IO Monad

Write char c to stdout putChar c

Write string cs to stdout putStr cs

... cs ... with a newline putStrLn cs

Print x, a show instance2, to stdout print x

Read char from stdin getChar

Read line from stdin as a string getLine

Read all input from stdin as a string getContents

Make foo process the input interact foo

:: (String -> String) -> IO ()

Write char c to channel/file h hPutChar h c

Write string cs to channel/file h hPutStr h cs

... cs ... with a newline ... to h hPutStrLn h cs

Copyright 2014, Rudy Matela – Compiled on March 19, 2014 – Upstream: https://github.com/rudymatela/ultimate-cheat-sheets This text is avaliable under the Creative Commons Attribution-ShareAlike 3.0 Licence, or, the GNU Free Documentation License version 1.3 or Later.

Pattern Matching

Simple Pattern Matching

Number 3 3

Character ’a’ ’a’

Empty string ""

List Pattern Matching

head x and tail xs (x:xs)

empty list []

list with 3 elements a, b and c [a,b,c]

list with 3 elements a, b and c (a:b:c:[])

list where 2nd element is 3 (x:3:xs)

Other Types Pattern Matching

pair values a and b (a,b)

triple values a, b and c (a,b,c)

just constructor Just a

nothing constructor Nothing

user-defined type MyData a b c

Wildcard Pattern “Matching”

ignore value _

ignore first elements of list (_:xs)

ignore second element of tuple (a,_)

ignore one of the “componenet” MyData a _ c

Nested Pattern

match first tuple on list ((a,b):xs)

match list inside tuple (xs,y:ys,zs)

As-pattern

match entire tuple s its values a,b s@(a,b)

match entire list a its head x and tail xs a@(x:xs)

entire data p and “components” p@(MyData a b c)

List Comprehensions

pairs where sum=4 [(x,y) |

x <- [0..4],

y <- [0..4],

x + y == 4]

== [(0,4),(1,3),(2,2),...]

Expressions (Eval. control)

statement separator ; -- or line break

statement grouping { } -- or layout/indentation

if expression if expr :: Bool

then expr :: a

else expr :: a

case expression case expr of

pat -> expr

pat -> expr

...

-> expr

let expression let name =expr

name =expr

...

in expr

where notation expr

where name =expr

name =expr

...

do notation do statement

pat <- exp

statement

pat <- exp

...

pattern matching f :: a -> b -> c

(case sugar) f pat pat = expr

f _ pat = expr

f pat _ = expr

f _ _ = expr

guarded equations name

| boolexpr = expr

| boolexpr = expr

| boolexpr = expr

Libraries / Modules

importing import PathTo.Lib

importing (qualified) import PathTo.Lib as PL

importing (subset) import PathTo.Lib (foo,goo)

declaring module Module.Name

(foo

, goo

)

where

...

./File/On/Disk.hs import File.On.Disk

QuickCheck Test.Quickcheck

declaring property prop something :: a -> Bool

prop something :: a -> Property

verifying property quickCheck prop something

SmallCheck Test.SmallCheck

verifying property smallCheck depth prop something

HUnit Test.HUnit

equality assertion expected ~=? actual

testlist mytestlist =

TestList [expec ~=? actual

, expec ~=? actual

...

, expec ~=? actual]

running tests runTestTT mytestlist

Language Pragmas

Activating some pragma {-# LANGUAGE SomePragma #-}

Same, via GHC call ghc -XSomePragma ...

No monomorphism restriction NoMonomorphismRestriction

Scoped type variables ScopedTypeVariables

Template Haskell TemplateHaskell

GHC - Glasgow Haskell Compiler

compiling program.hs $ ghc program.hs

running $./program

running directly $ run haskell program.hs

interactive mode (GHCi) $ ghci

GHCi load > :l program.hs

GHCi reload > :r program.hs

GHCi activate stats > :set +s

GHCi turn off stats > :unset +s

GHCi help > :?

Type of an expression > :t expr

Info (oper./func./class) > :i thing

Cabal package and build system

install package pkg $ cabal install pkg

update package list $ cabal update

list/search for packages matching pat $ cabal list pat

information about package pkg $ cabal info pkg

help on commands $ cabal help [command]

Copyright 2014, Rudy Matela – Compiled on March 19, 2014 – Upstream: https://github.com/rudymatela/ultimate-cheat-sheets This text is avaliable under the Creative Commons Attribution-ShareAlike 3.0 Licence, or, the GNU Free Documentation License version 1.3 or Later.

