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1 Algebra of Programming
1.1 Complete Partial Orders
Def. 1. A (pointed directed-)complete partial order (CPO)
is a partially ordered set (X,⊑) with a bottom element ⊥
and joins for all chains

⊥ ⊑ x0 ⊑ x1 ⊑ x2 ⊑ · · · ⊑
∞⊔

i=0
xi ∈ X.

Def. 2. A map on posets φ : (X,⊑) → (X ′,⊑′) is
monotone if for any x, y ∈ X, x ⊑ y =⇒ φ(x) ⊑ φ(y).

Def. 3. A map on CPOs φ : (X,⊑) → (X ′,⊑′) is
(Scott-)continuous if is monotone and it preserves joins for
all chains ∀ (xi)i∈N:

∞⊔
i=0

′

φ(xi) = φ

( ∞⊔
i=0

xi

)

Thm. 1 (Kleene). For a CPO (X,⊑) and a continuous
endomap φ : (X,⊑) → (X,⊑), the smallest fixpoint (i.e.
some value x for which x = φ(x), and x ⊑ y for any fixpoint
y with y = φ(y)) is the supremum

µφ =
∞⊔

i=0
φi(⊥),

where φi denotes the i-times application of φ .⇝
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Def. 4. A pre-fixed point of a φ : (X,⊑) → (X,⊑), is an
element x for which φ(x) ⊑ x.

1.2 F -Algebras
The concept of a F -Algebra provides a uniform approach to study
inductive data types (such as natural numbers, lists, trees, . . . ) and
their recursion schemes.

Def. 5. In a category C , given an object A ∈ Ob(C ) and an
endofunctor F : C → C the pair A, a : F (A)→ A is called
a F -Algebra. A F -Algebra-homomorphism f : (A, a) →
(B, b) ensures f ◦ a = b ◦ F (f). F -Algebras and F -Algebra-
homomorphisms constitute a separate category Alg(F ).⇝
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Def. 6. In Alg(F ), for any (A, a), the initial object (I, i)
(initial F -Algebra) has a unique (cata)morphism denoted
LaM from (I, i) to (A, a). The morphism LaM is also frequently
referred to as fold.

Def. 7 (Identity Law). For any initial F -Algebra (I, i),
LiM = idI holds by initiality of (I, i).

Def. 8 (Fusion Law). For any initial F -Algebra (I, i), arbi-
trary (A, a), (B, b) and a f : (A, a)→ (B, b), f ◦ LaM = LbM
holds by initiality of (I, i).

∗Based on and written in mind for the lecture “Algebra des
Programmierens” (2023/24), as held by Prof. Dr. Stefan Milius
at the Chair of Theoretical Computer Science, at the University of
Erlangen-Nuremberg. The numbering used in this document for
definitions and theorems differ from those used in the lecture notes.

†The LATEX sources should be available under https://gitlab.cs.
fau.de/oj14ozun/algprog-summary, or ought also be accessible as a

PDF attachment: , see git-bundle(1). The document and the
source are published under the terms and conditions of CC BY-SA 4.0.

Def. 9. The functor of a F -Algebra can be extended by
a parameter category A to F : C × A → C . For some
A ∈ Ob(A ), the initial algebra of F (−, A) is

(I(A), ιA : F (I(A), A)→ I(A)),
for a type-functor I : A → C .
Lem. 1 (Lambek). Given an initial F -Algebra (I, i), the
structure morphism i : F (I)→ I is an iso. ⇝
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Def. 10. In a category C with an initial object ⊤ and an
endofunctor F : C → C , a ω-chain is a chain of morphisms
⊤ F (⊤) F (F (⊤)) . . .

¡ F (¡) F (F (¡)) , or alterna-
tively the limit of the infinite shape J = {• → • → • →
. . . }, which is equivalent to the category of the poset (N,≤).
Def. 11. A endofunctor F : C → C is ω-cocontinuous if
it preserves colimits of ω-chains.
Def. 12. For a ω-cocontinuous endofunctor F : C → C ,
the initial F -Algebra is ⇝

Sk
.3

µF = colim
n∈N

F n⊤,

1.3 F -Coalgebra
The concept of a F -Coalgebra provides a uniform approach to study
infinite data types (such as streams or formal languages) and discrete
dynamical systems (such as automata).

Def. 13. In a category C , given an object A ∈ Ob(C )
and an endofunctor F : C → C the pair A, a : A → F (A)
is called a F -Coalgebra. A F -Coalgebra-homomorphism
f : (A, a)→ (B, b) ensures f ◦ a = b ◦ F (f). F -Coalgebras
and F -Coalgebra-homomorphisms (which respect the
system dynamics) constitute a separate category Coalg(F )
, which is not dual to Alg(F ), but to Alg(F op). ⇝
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Despite that qualification, results like lemma 1 or
definition 12 can mostly be derived analogously.
Def. 14. In Coalg(F ), for any (A, a) the terminal object
(T, t) (terminal F -Coalgebra) has a unique (ana)morphism
denoted (a) from (A, a) to (νF, t). (a) or unfold thus pro-
vides the existence of “definition principle” via corecursion.
Def. 15. A endofunctor F : C → C is ω-continuous if it
preserves limits of ω-chains.
Def. 16. For a ωop-continuous endofunctor F : C → C ,
the terminal F -Coalgebra is

νF = colim
n<ω

F n⊥.

Thm. 2 (Worwell). For a finitary functor F , νF = F ω+ω1,
that is to say one extends and repeats the ωop-chain,
starting with νF = F ω instead of ⊥.
Def. 17. For a endofunctor F : Set → Set and two
F -Coalgebra (C, c), (D, d) states x ∈ C, y ∈ D, are
behaviourally equivalent, if for some (E, e),

x ∼ y ⇐⇒ ∃h, k. (C, c) h−→ (E, e) k←− (D, d).
Def. 18. For a endofunctor F : Set → Set and two
F -Coalgebra (C, c), (D, d), a bisimulation is a relation R ⊆
C ×D (or x ∈ C, y ∈ D are bisimilar) if (R, r : R → FR)
is a F -Coalgebra with F -Coalgebra-morphisms to (C, c)
and (D, d). Bisimulation implies behavioural equivalence . ⇝
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2 Category Theory
2.1 Categories
Def. 19. A category C consists of a class of objects
Ob(C ) and for any X, Y ∈ Ob(C ) a set of morphisms
HomC (X, Y ) ∋ m (“Hom-set”), that relate the domain
X = dom(m) with the codomain Y = cod(m).

Def. 20. If Ob(C ) is a set, the category is called small.

Def. 21. For every X, Y, Z ∈ Ob(C ), any two morphisms
f ∈ HomC (X, Y ) and g ∈ HomC (Y, Z) can be composed
g ◦ f ∈ HomC (X, Z) associativley.

Def. 22. For every X, Y ∈ Ob(C ) there exists an identity
morphism idX ∈ HomC (X, X), for which the composition
f ◦ idX = f = idY ◦ f holds, given any f : X → Y .

Def. 23. An iso(morphism) for a morphism f : X → Y
if there exists a unique inverse morphism g : Y → X for
which f ◦ g = idY and g ◦ f = idX hold.

Def. 24. A morphism f : X → Y is a mono(morphism)
if f ◦ g = f ◦ g′ =⇒ g = g′ for all g, g′ : Z → X and
an epi(morphism) if h ◦ f = h′ ◦ f =⇒ h = h′ for all
h, h′ : Y → Z. Every iso is an epi and mono, but the⇝
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converse is not necessarily true.

Def. 25. Any category C , an opposite category C op is said
to be “dual”. It is defined by reversing the direction of all
morphisms, e.g. f : X → Y in C has a f ′ : Y → X in C op.

Def. 26. A functor F : C → D consists of a mapping
of objects and morphisms from C to D , so that for all
f ∈ HomC (X, Y ), g ∈ HomD(X ′, Y ′), each composition
F (g ◦ f) = F (g) ◦ F (f) and for each identity morphism
idX F (idX) = idF (X) holds.

Def. 27. An endofunctor is a functor with the same
domain and codomain F : C → C .

Def. 28. A constant functor F : C → D maps all objects
to a fixed object X ∈ Ob(D) in the codomain, and all
morphisms to idX .

Def. 29. A functor F : C → D is called faithful, if the
morphism map F is injective, full, if the F is surjective, fully
faithful, if an iso is given between every object in Ob(D)
and Ob(F (C )), and equivalence, if all of the above hold.

Def. 30. A (covariant) Hom-functor HomC (X,−) : C →
Set maps an object X ∈ Ob(C ) to the set of morphism from
X and morphism f : Y → Z to the extended compositions
HomC (X, f) : HomC (X, Y )→ HomC (X, Z), i.e. g 7→ f ◦g.

A contravariant Hom-functor is otherwise defined
identically on the dual category HomC (−, X) : C op → Set,
and pre-composes morphisms g 7→ g ◦ f , preserving the
codomain X.

Def. 31. Given two functors F, G : C → D , a natural
transformation η : F → G (or η : F ⇒ G) is a family
of component morphisms ηC : F (C) → G(C) indexed by
C ∈ Ob(C ), such that for all morphisms f : X → Y in C

G(f) ◦ ηX = ηY ◦ F (f).

Def. 32. A natural isomorphism η : F → G is an iso
in the functor category fcC D , or equivalently a natural
transformation where all component morphisms are
isomorphic in D .⇝
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Lem. 2 (Yoneda). In any category C , for every object
A ∈ Ob(C ) and every functor F : C → Set ,⇝
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HomSetC (HomC (A,−), F ) ∼= F (A).

2.2 Universal Constructions
Category theory emphasises the relations of objects via morphisms
over objects and their “internal structure” or what they represent. Of
specific interest are constructions of objects and morphisms that are
uniquely identifiable by specific morphisms, usually unique morphisms
between objects (i.e. |HomC (A, B)| = 1).

Def. 33. A diagram is a functor F : J → C
maps a shape (or “scheme”) J into C . For a cone(
C, (fj : C → F (j))j∈Ob(J )

)
(or a natural transformation

from a constant functor of the apex C to the diagram) and
any u : j → j′ in J , fj′ = F (u) ◦ fj holds.

Def. 34. A limit
(

L, (πj : C → F (j))j∈Ob(J )

)
is a

universal cone, when
∀j ∈ Ob(J )∀C ∈ Ob(C )∃!h : C → L. πj ◦ h = fj .

As a morphism from a limit is unique up to iso , names of ⇝
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limits may refer both to the object C and the morphism h.

Def. 35. A terminal object ⊥ of the limit L of the shape
J = {•}. For any object X ∈ Ob(C ) there exists a unique
morphism ¡ : X → L = ⊥.

Def. 36. A (binary) product of the limit L of the shape J =
{• •} ((discrete) category restricted to identity morphisms).

Def. 37. A pullback is the limit L of the shape
J = {• → • ← •} (a poset with a ⊥-element).

Def. 38. A equaliser is the limit L of the shape
J = {•⇒ •}.

Every equaliser morphism e is a mono. If a mono is
an equaliser, then it is called regular. A regular mono
m : X → Y that is also an epi is consequently an iso . ⇝

Sk
.1

1

Def. 39. If for a category every (finite, ie. the domain is a
finite shape) shape has a limit, then it is said to be (finitely)
complete.

Finite completeness of C if equivalent to C having finite
products and equalisers or products and pullbacks or a
terminal object and pullbacks . ⇝
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Def. 40. A colimit
(

K, (ιj : F (j)→ K)j∈Ob(J )

)
is a

cocone, dual to a limit, and ensures
∀j ∈ Ob(J )∀C∃!h : K → C. h ◦ ιj = fj .

Def. 41. A initial object ⊤ of the colimit K of the shape
J = {•}. For any object X ∈ Ob(C ) there exists a
unique morphism ! : K → X from ⊤. Dual construction
of terminal objects.

Def. 42. A (binary) coproduct of the colimit K of the
shape J = {• •}, dual construction of products.

Def. 43. A pushout is the colimit K of the shape J = {• ←
• → •} (a poset with a ⊤-element, not dual to pullback).

Def. 44. A coequaliser is the colimit K of the shape
J = {•⇒ •}.

Every coequaliser morphism e is an epi. If a epi is
an coequaliser, then it is called regular. A regular epi
e : X → Y that is also an mono is consequently iso.

Def. 45. If for a category every (finite) shape has a colimit,
then it is said to be (finitely) cocomplete. This is dual to
the notion of completeness.

Finite completeness of C is equivalent to C having finite
coproducts and coequalisers or coproducts and pushouts
or an initial object and pushouts . ⇝
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A Prolegomena & Precedents
Ex. 1. The category Set has sets as objects and morphisms
HomSet(X, Y ) are all functions between the sets X and Y .
In set-theory, (total) functions are defined as relation f ⊆
X × Y satisfying the conditions of totality and univalence:

∀x ∈ X∃y ∈ Y. (x, y) ∈ f (“left-total”)
(x, y) ∈ f ∧ (x, y′) ∈ f =⇒ y = y′ (“right-unique”)

Properties and Constructions in Set Since Set is
complete, all the constructions in the following exist:
Monos are injective functions f : X → Y ,

∀x, y ∈ X. f(x) = f(y) =⇒ x = y
and are always regular.

Epis are surjective functions, f : X → Y
∀y ∈ Y ∃x ∈ X. f(x) = y

and are always regular.
Isos are bijective functions, ∀x ∈ X∃!y ∈ Y. f(x) = y.
Terminal objects are singleton sets {y}, for any y ∈ Y ,

as for any domain X we can construct a function
t = {(x, y)|∀x ∈ X},

that is the constant function x 7→ y. These are unique
up to isomorphisms.

Initial objects are empty sets {}, as for an empty domain
X = {}, both properties of functions are trivially given
(universal quantification over an empty set).

Products are cartesian products X × Y .
Coproducts are disjoint unions X ⊎ Y .
Equalisers of two functions f, g : X → Y is the set

Eq(f, g) := {x ∈ X | f(x) = f(x)}.
Coequalisers of two functions f, g : X → Y is Y/∼,

where ∼⊆ Y × Y is the smallest equivalence relation for
which ∀y ∈ Y. f(y) ∼ g(y).

Pullbacks of two functions f : X → Z to g : Y → Z is
the set

Pb(f, g) := {(x, y) ∈ X × Y | f(x) = g(y)}.
Pushouts of two functions f : Z → X to g : Z → Y

where ∼⊆ X × Y is the smallest equivalence relation for
which ∀z ∈ Z. f(z) ∼ g(z).

Initial F -Algebras Examples include F (X) = . . .
1 + X are natural numbers,
1 + A×X are lists,
A + X2 are binary trees,∏

σ∈Σ Xar σ , Term- or Σ-algebra, over a set of operations
Σ and an arity function ar : Σ→ N.

Terminal F -Coalgebras Examples include F (X) = . . .
A×X infinite streams,
A×XΣ Moore automata,
(A×X)Σ Mealy automata,
2×XΣ finite deterministic automata,
2× (Pf (X))Σ finite non-deterministic automata (where
Pf is the finite powerset-functor),

P(X) unlabeled transition systems (effectively digraphs),
P(A×X) labeled transition systems,∐

σ∈Σ Xar σ codatatypes over a Σ-algebra.

Ex. 2. Given the categories C (small) and D , the functor
category DC has functors F : C → D as objects and natural
transformations η : F → G as morphisms.

Ex. 3. The category Veck has k-dimensional vector spaces
as objects and linear transformations as morphisms. That
means that objects are spaces like Rk and morphisms
f : X → Y are restricted to linear transformations that for
x, x′ ∈ X and a scalar a ensure

f(a · x + x′) = a · f(x) + f(x′).

Ex. 4. The category Gra has di(-rected )graphs (V, E)
as objects and graph homomorphisms as morphisms. That
means that a morphism f : A → B have to preserve
strongly connected components, i.e.
∀a, b ∈ V (X). a ∼E(A) b =⇒ f(a) ∼E(B) f(b),

where x ∼E(G) y says that there is a path from x to y in
the digraph G, over the transitive-reflexive closure of edges.

The initial object are therefore the empty graph V = {},
since there are no components to be preserved, and the
terminal object is the single-vertex graph V = {•}, since it
melds all strongly connected components into one (trivially)
connected component.

Ex. 5. The category generate by a partially ordered set
(poset) (X,≤) has elements of X as objects and morphisms
defined as

Hom(X,≤)(x, y) = {(x, y) | x ≤ y}
represent each “less than” relation.

A poset may include a “greatest” element ⊤ and “least”
element ⊥, s.t. ∀a ∈ X.⊥ ≤ a ≤ ⊤. These correspond
to the terminal and initial objects respectively. Products
are correspond to the greatest lower bound (meet, “∧”),
as for any x, y ∈ X, x ∧ y ≤ x and x ∧ y ≤ y. Coproducts
analogously correspond to the least upper bound (join, “∨”).

Ex. 6. The category Pos of partial orders and monotone
functions. Note the difference to the category of a poset,
in the sense that Pos is one “level above” each (X,≤), even
if that forms a category of its own.

Ex. 7. In Algebra, a monoid (M, · : M ×M → M, e) is
a “set M with structure”, given by a binary operation · and
a neutral element e, s.t. ∀a, b, c ∈M

(a · b) · c = a · b · c = a · (b · c)
e · a = a = a · e

Examples include
(N, +, 0) Addition of natural numbers with 0 as a the

neutral element.
(N,×, 1) Multiplication of natural numbers with 1 as the

neutral element.
(Σ⋆,⊕, ε) Concatenation of strings over some alphabet Σ

with the empty string ε as the neutral element.
These properties rhyme with categories, and we can

view each monoid as a small category with a single object
Ob((M, ·, e)) = {•} and morphisms corresponding to
elements of the carrier set M

Hom(M,·,e)(•, •) = M.

Ex. 8. The category Mon of have monoids as objects,
and Monoid homomorphisms as morphisms. That means,
a morphism f : (M, ·M , eM )→ (N, ·N , eN ) has to obey

f(x ·M y) = f(x) ·N f(y)
f(eM ) = eN

for all x, y ∈M .

Ex. 9. The category Rel has sets as objects and defines
morphisms as arbitrary HomRel(X, Y ) ⊆ X × Y .

Rel is self-dual, since Relop ∼= Rel.

Ex. 10. The category Par is comparable to Set, just by
extending the morphisms from total to partial functions
f : X → Y (not necessarily defined for every element in X).

Ex. 11. The category Top has topological spaces (X,OX ⊆
P(X)) as objects and continuous functions as morphism.
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B Sketches of the Proofs
NOTEME: The proofs in this section make no claim to be rigorous,
just to convey an approximate approach taken in proving claims made
in the lecture.

The document source is publicly available (see the frontpage), so
any and all comments are much appreciated.

Sk. 1. The smallest fixpoint a continuous φ on a CPO
(X,⊑) is µφ (c.f. theorem 1).

Proof. This is a two-step proof. First we want to show that
µφ is a fixpoint, which be seen by equational reasoning

φ(µφ) = φ

( ∞⊔
i=0

φi(⊥)
)

(expand def.)

=
∞⊔

i=0
φi+1(⊥) =

∞⊔
i=1

φi(⊥) (continuity)

N.B.: Suprema are invariant under omission of finitely
many elements of an infinite chain, so we can safely add
the bottom element:

= φ0(⊥) ⊔
∞⊔

i=1
φi(⊥)

=
∞⊔

i=0
φi(⊥) = µφ (contract def.)

To see that µφ is the smallest fixpoint, consider any x —
for which φ(x) = x must hold — and the chain of inference

⊥ ⊑ x

=⇒ φ(⊥) ⊑ φ(x) = x (φ is mono.)
=⇒ φ2(⊥) ⊑ φ2(x) = φ(x) = x

... (i.e. induction)

=⇒ µφ =
∞⊔

i=0
φi(⊥) ⊑

∞⊔
i=0

φi(x) = x

which demonstrates that respective to ⊑, µφ must be
“smaller” that any x. This concludes the entire proof. ■

Sk. 2. Given an endofunctor F in C , Alg(F ) constitute
a category.

Proof. Knowing the objects of Alg(F ) are pairs (A, a), s.t.
FA

a−→ A is a morphism in C and the morphisms of Alg(F )
are morphisms f : (A, a)→ (B, b) in C s.t. f ◦ a = b ◦F (f),
we only need to justify that the properties of morphisms hold:
Identity For any (A, a), we can re-use idA from C , since

a = idA ◦ a = a ◦ F (idA) = a ◦ idF A = a ◦ idA = a.
Composition For any (A, a), (B, b) and (C, c) with

f : (A, a) → (B, b) and g : (B, b) → (C, c), we know a
that g ◦ f : (A, a)→ (C, c) must exist, as

g ◦ f ◦ a = c ◦ F (g ◦ f)
g ◦ f ◦ a = c ◦ F (g) ◦ F (f)

g ◦ b ◦ F (f) = g ◦ b ◦ F (f),
where the underlined left and right terms respectively
make use of the commutativity inherent in f and g. ■

Sk. 3. The colimit µF of a ω-cocontinuous ω-chain is the
initial F -Algebra.

Proof. To construct a unique morphism from (µF, i) to an
arbitrary F -Algebra (A, a), one needs to construct a cocone
over the ω-chain with A as the coapex. For every element
F n(⊤) this morphism is

a ◦ F (a) ◦ F 2(a) ◦ . . .︸ ︷︷ ︸
n times

◦F n!,

where ! : ⊤ → A. The idea is that every element of
the ω-chain is mapped from F n(⊤) to F n(A) and then
“reduced” to A via lifted applications of a : F (A)→ A.

There will be a unique morphism from µF to this
A that can also be mapped under F to produce a
F -Algebra-morphism. ■

Sk. 4. Given an endofunctor F , Coalg(F ) constitute a
category.

Proof. This proof is dual to sketch 2. ■

Sk. 5. The morphism i : FI → I of the initial F -Algebra
(I, i) is an iso (c.f. lemma 1).

Proof. To prove that i is an isomorphism, we need to
construct an inverse i−1 : I → FI in Alg(F ).

Given the initial F -Algebra (I, i) we derive a further object
(FI, F i), for which there must exist a unique morphism LFiM :
(I, i) → (FI, F i), which corresponds to i−1. As (I, i) is
initial, idF I is the only morphism to (FI, F i), hence idI = i◦
i−1. The opposite direction, follows by equational reasoning:

i−1 ◦ i = Fi ◦ Fi−1 (comm. of cata.)
= F (i ◦ i−1) (prop. functor)
= F (idI) (see above)
= idF I ■

Sk. 6. All component morphisms of a natural iso are
isomorphic functors, and vice versa.

Proof. Assuming η is a natural iso (i.e. there is a η−1)
— i.e. an iso in DC – we have to prove that every
ηA : F (A)→ G(A) is an iso (i.e there is a ηA

−1). This can
be trivially constructed by indexing η−1 by A, attaining
η−1

A : G(A) → F (A). The uniqueness of η−1
A is inherited

from the uniqueness of η−1.
Assuming every ηA is an iso, we have to prove that η is

an iso in DC : This requires the construction of a family of
morphisms (ηA

−1)A∈Ob(C ) which are given by ηA being isos.
In addition, the naturality condition must be verified. ■

Sk. 7. There exists a (set-theoretical) bijection between
the application of A ∈ Ob(C ) on a functor F : C → Set
and the morphisms between hom-functors from A to the
functor F in the category of functors (c.f. lemma 2).

Proof. The proof of a bijection requires the construction
of two functions, mapping between the two sets in opposite
directions:

ℵ : HomSetC (HomC (A,−), F )→ F (A)
ℵ(η) = ηA (idA)

ℶ : F (A)→ HomSetC (HomC (A,−), F )
ℶ(x) = (h 7→ (F (h))(x))B∈Ob(C )

These are their mutual inverse functions, as can be
seen by equational reasoning. Given an x ∈ F (A) and
η ∈ HomSetC (HomC (A,−), F ),
ℵ(ℶ(x)) = ℵ (h 7→ (Fh)(x))

= (h7→(Fh)(x)) (idA)
= (F idA)(x) = idF A(x) = x
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and conversely for a η ∈ HomSetC (HomC (A,−), F ) and
m : A→ B

ℶ(ℵ(ηA))(m) = ℶ (ηA (idA)) (m)
= (h7→Fh (ηA (idA)))(m)
= Fm (ηA (idA)) (∗)

= ηA

(
HomC (A, m)(idA)

)
= ηA

(
m ◦ idA

)
= ηA (m)

Furthermore, for (∗) to work, one has to prove that for
an x, ℶ(x) actually constructs a natural transformation,
by verifying the naturality condition,

Fm ◦ ℶ(x) = ℶ(x) ◦HomC (A, m)
for an arbitrary f ∈ HomC (A, B):

Fm((ℶ(x))(f)) = (ℶ(x))(HomC (A, m)(f))
Fm((h 7→ Fh)(f)) = (h 7→ Fh)(HomC (A, m)(f))

Fm(Ff) = (h 7→ Fh)(mf)
F (mf) = F (mf) ■

Sk. 8. Every iso f : X → Y is a mono and epi, but not
always conversely.

Proof. For any g, h : Z → X
fg = fh ⇐⇒ f−1f︸ ︷︷ ︸

idX

g = f−1f︸ ︷︷ ︸
idX

h ⇐⇒ g = h,

and analogously for epi.
The reverse does not hold: In posets (X,≤) all morphisms

are epi and mono, since for x, y, z ∈ X
x ≤ y ≤ z =⇒ x ≤ y ∧ y ≤ z,

i.e. shortening the pre- and post-composition, but only
identity morphisms are iso, since

x ≤ y ∧ y ≤ x ⇐⇒ x = y. ■

Sk. 9. A category C is finitely complete. . .
⇐⇒ C has finite products and equaliser (1)
⇐⇒ C has finite products and pullback (2)
⇐⇒ C has terminal object and pullback (3)

Proof. Considering the “⇐= ” direction for each sub-claim:
(1) Given an arbitrary shape J and diagram F : J → C ,

construct for an arbitrary morphism h in J

F (dom(h)) F (cod(h))

E
∏

j∈Ob(J )

Fj
∏

j∈Mor(J )

F (cod j)

F (cod(h))

F h

e
⟨F m◦πdom(m)⟩

⟨πcod(m)⟩

π
d

om
h

πcod h

π
h

π
h

where Mor(J ) =
⋃

j,j′∈Ob(J ) HomJ (j, j′) is the set of
all morphisms in J .

The morphism λj := πj ◦ e span a cone(
E, (λj)j∈Ob(J )

)
, that inherits its universal prop-

erty from that of the equaliser e.
(2) Equalisers of two morphisms m, n : A→ B are pullbacks

of the form A
m−→ B

n←− A. Given this fact, we can
reduce the proof to that finite products and equaliser.

(3) Products A×B are pullbacks of the form A→ ⊥← B.
Equalisers can be constructed analogously to the second
point. Using these constructions, the proof can be
reduced to (1).

The opposite direction (C is complete =⇒ C has . . . )
is trivial, since finite completeness (i.e. has limits for any
finite shape) is sufficient to construct any terminal object,
product, equaliser or pullback. ■

Sk. 10. A category C being finitely cocomplete is
equivalent to C having finite coproducts and coequalisers or
coproducts and pushouts or an initial object and pushouts.

Proof. As colimits are dual to limits, we can dualize and
refer to sketch 9. ■

Sk. 11. If a regular mono m is also epi, then m is an iso.

Proof. If m : A → B is regular mono, there must exist
some f, g : C → A for which

f ◦m = g ◦m =⇒ f = g,
since m is epi as well. For m to be the equaliser of the same
morphism twice, it is necessary for idB to be a possibly
other equaliser of f and g, since

f = g =⇒ f ◦ idB = g ◦ idB .
Consequently there must be a unique m−1 : B → A, so

that m−1 ◦m = idB holds, which demonstrates that m is an
iso. An overview of this proof is found in this commutative

diagram:
A B C

B

m
f

g

m−1
idB

See sketch 8 for an example that a non-regular mono is
insufficient. ■

Sk. 12. Limits are unique up to iso.

Proof. Assume two L and L′ are limits for any shape J .
Then there must exist a unique morphism from L to L′ and
vice versa, which is the isomorphism. ■

Sk. 13. Bisimulation implies behavioural equivalence.

Proof. Given a bisimulation (C, c) π1←− (R, r) π2−→ (D, d)
we can construct a pullback Pb(π1, π2) = (P, p). In Set
this exist necessarily, meaning that the cone morphisms
(C, c) p1−→ (P, p) p2←− (D, d) provide the intended behavioural
equivalence. ■
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