
(Yet another)2 Artificial Intelligence I Summary

Written by Lorenz Gorse∗

Updated by Marius Frinken†, Philip K.‡

Last updated for the Winter Semester 2020

1 Agents

Def. 1 (Agent). An agent a is an entity that perceives (via
sensors) and acts (via actuators). It can be modelled as an agent
function fa :P

∗ 7→A, mapping from percept histories to actions.

Def. 2 (Performance measure). A function that evaluates a
sequence of environments.

Def. 3 (Rationality). An agent is “rational”, if it chooses the
actions that maximizes the expected value of the performance
measure given the percept history.

Def. 4 (Autonomy). An agent is called autonomous, if it does
not rely on the prior knowledge of the designer. Autonomy
avoids fixed behaviour in changing environments.

Def. 5 (Task environment). The combination of a performance
measure, environment, actuators and sensors (PEAS) describes
a (task) environment e.

Def. 6 (Environment properties). An environment is called. . .
fully observable, iff a’s sensors give it access to the complete

state of e at any point in time, else partially observable.
deterministic, iff the next state of e is completely determined

by a’s action and e’s current state, else stochastic.
episodic, iff a’s experience is divided into atomic, independent

episodes, where it perceives and performs a single action.
Non-episodic environments are called sequential.

dynamic, iff e can change without an action performed by
a, else static.

discrete, iff the sets of e’s states and a’s actions are countable,
else continuous.

single-agent, iff only a acts on e.

Def. 7 (Simple reflex agent). An agent that bases its next
action only on the most recent percept, fa :P 7→A.

Def. 8 (Model-based agent). Like simple reflex agent, but
additionally maintains a (world) model to decide it’s next move.

Def. 9 (Goal-based agent). A model-based agent that also
takes it’s goals into consideration when deciding.

Def. 10 (Utility-based agent). An agent that combines a
world model and a utility function, measuring state-preferences.
Its choices attempt to maximize the expected utility, allowing
rational decisions where goals are insufficient.

Def. 11 (Learning agent). An agent that augments the
performance element, which chooses actions from percept
sequences, with a. . .
learning element making improvements to the agent’s

performance element.
critic giving feedback to the learning element based on an

external performance standard.
problem generator suggesting actions that can lead to new,

informative experiences.

Def. 12 (State representation). We call a state representation:
atomic if it has no internal structure.
factored if each state is characterized by attributes and their

values.
structured if the state includes objects and their relations.

∗https://gitlab.cs.fau.de/snippets/15
†https://gitlab.cs.fau.de/tyr/ki-1-summary
‡https://gitlab.cs.fau.de/oj14ozun/ai1-summary

2 Search

Def. 13 (Search problem). A search problem Π:=〈S,A,T ,I,G〉
consists of a set S of states, a set A of actions, a transition
model T :A×S 7→P(S) that assigns any action and state to a
set of successor states. Certain states in S are labelled as “goal
states” G and “initial states” I. A cost function c :A 7→R

+
0

may assigns costs to actions.

Def. 14 (Solution). A sequence of applicable actions that lead
from a initial state I to a goal state g∈G is a solution.

Def. 15 (Problem types). Problems come in many variations:
Single-state problem: state is always known with certainty

(observable, deterministic, static, discrete)
Multiple-state problem: know which states might be in

(initial state not/partially observable)
Contingency problem: constructed plans with conditional

parts based on sensors (non-deterministic, unknown state
space)

Def. 16 (Tree search). An algorithm that explores state
spaces, forming a search tree of already-explored states,
modelled as nodes. It’s fringe are the nodes that have not yet
been considered.

Def. 17 (Search strategy). A search strategy picks a node
from the fringe of a search tree. It’s properties are:
Completeness: Does it always find a solution if one exists?
Time complexity: Number of nodes generated/expanded.
Space complexity: Maximum number of nodes held in

memory.
Optimality: Does it always find the least-cost solution?

Def. 18 (Uninformed search). Search strategies that only
employ information from the problem definition yield
uninformed searches. Examples are breadth-first-search
(BFS), uniform-cost-search (UCS, also called “Dijkstra’s
algorithm”), depth-first-search (DFS), depth-limited search
and iterative-deepening-search (IDS).

Def. 19 (Informed search). Search strategies that use
information about the real world beyond the problem statement
yield informed searches. The additional information about
the world is provided in form of heuristics. Examples are
greedy-search and A⋆-search.

Def. 20 (Heuristic). A heuristic is an evaluation function
h :S 7→R

+
0 ∪{∞} that estimates the cost from a state n to

the nearest goal state. If s∈G, then h(s)=0. All nodes for
the same states must have the same h-value.

Def. 21 (Goal distance function). A function
h∗ : S 7→ R

+
0 ∪ {∞} determining the cheapest path

from any nodes to a goal state, or ∞ if no path exists.

Def. 22 (Admissibility and consistency). A heuristic h is
admissible if h(s)≤ h∗(s) for all states s∈S, i.e. forming a
lower bound. h is consistent if h(s)−h(s′)≤c(a) for all s∈S,
a=(s,s′)∈A and a cost function c.

Def. 23 (Greedy-search). Greedy-search always expands the
node that appears to be closest to a goal state, as determined
by a heuristic.

1

https://gitlab.cs.fau.de/snippets/15
https://gitlab.cs.fau.de/tyr/ki-1-summary
https://gitlab.cs.fau.de/oj14ozun/ai1-summary

Def. 24 (A⋆-search). Expands the node with the minimum
evaluation value f(s)=g(s)+h(s), where g(s) is the path cost.
A⋆-search is optimal if it uses an admissible heuristic h.

Def. 25 (Dominance). Let h1 and h2 be two admissible
heuristics we say that h1 dominates h2 if h1(s)≥h2(s) for all
s∈S. The dominant heuristic is better for search.

Def. 26 (Relaxation). A search problem Π := 〈S,A,T ,I,G〉
has a relaxed problem Πr := 〈S,Ar,T r,Ir,Gr〉 iff A ⊆ Ar,
T ⊆T r I ⊆Ir G ⊆Gr. This means that any solution for Π
is a solution for Πr.

Def. 27 (Local search). A search algorithm that only operates
on a single space at a time is called a local search. Local
search algorithms need constant space, because it doesn’t
have to remember multiple paths. Examples are hill-climbing,
simulated annealing or genetic algorithms.

2.1 Adversarial Search

Def. 28 (Game state space). A 6-tuple Θ=〈S,A,T,I,ST ,u〉 is a
game state space, for two players “Max” and “Min” consists of:
• S is the disjoint union of SMax, SMin and ST (respectively
the sets of “Max” ’s, “Min” ’s and terminal states).

• A is the disjoint union AMax ⊆ SMax × (SMin ∪ST) and
AMin⊆SMin×(SMax∪ST)

• I is the initial state.
• u :ST 7→R is the utility function.

Def. 29 (Strategy). Let Θ be a game state space, and
X∈{Max,Min}. A strategy for X is a function σX :SX 7→AX

so that a is applicable to s whenever σX(s)=a. A strategy
is optimal if it yields the best possible utility for X assuming
perfect opponent play.

Def. 30 (Minimax Algorithm). The minimax algorithm is
given by the following function whose input is a state s∈SMax,
in which Max is to move. It attempts to find the best move
for “Max”:

function 1 MinimaxDecision(s) returns an action

1: v :=MaxValue(s)
2: return an action yielding value v in the previous function

call

function 2 MaxValue(s) returns a utility value

1: if TerminalTest(s) then return u(s)

2: v :=−∞
3: for each a∈Actions(s) do

4: v :=max(v,MinValue(ChildState(s,a)))

5: return v

function 3 MinValue(s) returns a utility value

1: if TerminalTest(s) then return u(s)

2: v :=+∞
3: for each a∈Actions(s) do
4: v :=min(v,MaxValue(ChildState(s,a)))

5: return v

Def. 31 (Alpha-Beta Search). To avoid evaluating states
that are not of interest, Alpha-Beta Pruning can be used to
accelerate Minimax search:

function 4 AlphaBetaSearch(s) returns an action

1: v :=MaxValue(s,−∞,+∞)
2: return an action yielding value v in the previous

function call

function 5 MaxValue(s,α,β) returns a utility value

1: if TerminalTest(s) then return u(s)

2: v :=−∞
3: for each a∈Actions(s) do
4: v :=max(v,MinValue(ChildState(s,a),α,β))
5: α :=max(α,v)
6: if v≥β then return v ⊲ v≥β ⇐⇒ α≥β

7: return v

function 6 MinValue(s,α,β) returns a utility value

1: if Terminal-Test(s) then return u(s)

2: v :=+∞
3: for each a∈Actions(s) do
4: v :=min(v,MaxValue(ChildState(s,a),α,β))
5: β :=min(β,v)
6: if v≤α then return v ⊲ v≤β ⇐⇒ α≥β

7: return v

Def. 32 (Monte-Carlo Tree Search). If there is no good known
evaluation function, Monte-Carlo Tree Search decides on an
action through sampling average u(t),t∈ST . For Monte-Carlo
tree search we maintain a search tree T:

function 7 MonteCarloTreeSearch(s) returns an action

1: while time not up do

2: apply actions within T to select a leaf state s′

3: select action a′ applicable to s′

4: run random sample from a′

5: add s′ to T , update averages etc.

6: return an a for s with maximal average u(t)
7: When executing a, keep the part of T below a.

3 Constraint Satisfaction Problems

Def. 33 (Constraint Satisfaction Problem, CSP). This is a
search problem where the states are given by a finite set of
variables V :={X1,...,Xn} over domains D :={Dv |v∈V } and
a goal test, giving legal combinations of values for subsets of
variables. The CSP is called. . .

binary iff all constraint relate at most two variables.
discrete iff all of the variables have countable domains.
continuous iff it is not discrete.

A CSP has a factored world representation. Examples
include SuDuKo, Map-Colouring, Timetabling and Scheduling.

Def. 34 (Constraint network). A triple 〈V,D,C〉 is called a
constraint network, where V and D as the same as for CSPs,
and a set of binary constraints

C :={Cuv=Cvu⊆Du×Dv |u,v∈V and u 6=v}.

Any CSP can be represented by a constraint network.

Def. 35 (Constraint Network Graph). For a constraint
network γ=〈V,D,C〉, the graph formed by 〈V,C〉 is called the
“constraint graph” of γ.

2

Def. 36 (Assignment). A partial assignment for a constraint
network is a partial function a :V 7→

⋃
v∈VDv if a(v)∈Dv for

all v∈V . If a is total a, is just called an “assignment”.

Def. 37 (Consistency). A partial assignment a is inconsistent,
iff there are variables u,v ∈ V and a constraint Cuv ∈ C
and (a(u),a(v)) 6∈ Cuv. Otherwise a is called consistent. A
consistent, total assignment is a solution.

Def. 38 (Backtracking on CSPs). A straightforward approach
to solve a CSP is to incrementally try assigning variables until
a consistent solution is found, backtracking if necessary. To
improve the efficiency of this approach, the following heuristics
can be applied:
Minimum remaining values Assign the variable with the

fewest remaining legal values. This is done to reduce the
branching factor of the search tree.

Degree heuristic Assign the variable with the most
constraints on remaining variables. This is done to detect
inconsistencies early on.

Least constraining value When assigning a variable,
choose the value that rules out the fewest values from the
neighbouring domains.

Def. 39 (Equivalent constraint networks). Two constraint
networks γ = 〈V,D,C〉 and γ′ = 〈V,D′,C′〉 are equivalent
(γ≡γ′) iff they have the same solutions.

Def. 40 (Tightness). Let γ=〈V,D,C〉 and γ′=〈V,D′,C′〉 be
two constraint networks. γ′ is “tighter” than γ (γ′⊑γ) iff
1. For all v∈V , D′

v⊆Dv

2. For all u,v∈V,u 6=v and C′
uv∈C′, C′

uv /∈C or C′
uv⊆Cuv

If at least one of these inclusions are strict, γ′ is “strictly tighter”.
An equivalent but tighter constraint network is preferable,

because it has fewer consistent partial assignments.

Def. 41 (Backtracking with Inference). The general algorithm
for backtracking with inference, where Inference(γ) is any
procedure that delivering a (tighter) equivalent network.

function 8 BacktrackingWithInference(γ,a) returns a solu-
tion, or “inconsistent”

1: if a is inconsistent then return “inconsistent”
2: if a is a total assignment then return a

3: γ′ := a copy of γ ⊲ γ′ :=(V,D′,C′)
4: γ′ :=Inference(γ′)
5: if exists v with D′

v=∅ then return “inconsistent”

6: select some variable v for which a is not defined
7: for each d∈ copy of D′

v in some order do
8: a′ :=a∪{v=d} ⊲ makes a explicit as a constraint
9: D′

v :={d}
10: a′′ :=BacktrackingWithInference(γ′,a′)
11: if a′′ 6=“inconsistent” then return a′′

12: return “inconsistent”

Def. 42 (Forward checking). For a constraint network γ and
a partial assignment a, propagate information about values
from the domains of unassigned variables that are in conflict
with the values of already assigned variables to obtain a tighter
network γ′.

function 9 ForwardChecking(γ,a) returns modified γ

1: for each v where a(v)=d′ is defined do

2: for each u where a(u) is undefined and Cuv∈C do

3: Du :={d∈Du |(d,d
′)∈Cuv}

4: return γ

Def. 43 (Arc consistency). A variable pair v,u∈V,v 6=u is
arc consistent, if Cuv /∈C or for every value d∈Dv there exists
a d′∈Du such that (d,d′)∈Cuv.

A constraint network γ is act consistent, if every variable
pair v,u∈V,v 6=u is arc consistent.

Arc consistency can be “enforced” by reducing domains.
Revise(γ,v,u) enforces arc consistency for v relative to u.

function 10 Revise(γ,v,u) returns modified γ

1: for each d∈Dv do

2: if there is no d′∈Du with (d,d′)∈Cvu then

3: Dv :=Dv\{d}

4: return γ

The AC-3 Algorithm (O(mk3), for m constraints and
maximal domain size k) applies Revise(γ,u,v) up to a fixed
point, remembering potentially inconsistent variable pairs:

function 11 AC−3(γ) returns modified γ

1: M :=∅
2: for each constraint Cuv∈C do

3: M :=M∪{(u,v),(v,u)}

4: while M 6=∅ do

5: remove any element (u,v) from M
6: Revise(γ,u,v)
7: if Du has changed in the call to revise then

8: for each constraint Cwu∈C where w 6=v do

9: M :=M∪{(w,u)}

10: return γ

To solve an acyclic constraint network, enforce arc consistency
with AC−3(γ) and run backtracking with inference on the arc
consistent network. This will find a solution without having
to backtrack.

A simpler algorithm, AC−1(γ) has a runtime of O(mk3n),
where n is the number of variables.

Def. 44 (Acyclic Constraint Graph). Let γ = 〈V,D,C〉 be
a constraint network with n variables and maximal domain
size k, whose constraint graph is acyclic. Then we can find
a solution for γ, or prove γ to be inconsistent, in time O(nk2):

function 12 AcyclicCG(γ) returns solution, or “inconsis-
tent”
1: Obtain a directed tree from γ’s constraint graph, picking an

arbitrary variable v as the root, and directing arcs outwards.
2: Order the variables topologically, i.e., such that each vertex

is ordered before its children; denote that order by v1,...,vn.
3: for i :=n,n−1,...,2 do

4: Revise(γ,vparent(i),vi)
5: if Dvparent(i) =∅ then return “inconsistent”

6: Run BacktrackingWithInference with forward checking,
using the variable order v1,...,vn.

Def. 45 (Cutset conditioning). Let γ=〈V,D,C〉 be a constraint
network, and V0⊆V . V0 is a “cutset” for γ if the sub-graph
of γ’s constraint graph-graph induced by V \V0 is acyclic. V0
is optimal if its size is minimal among all cutsets for γ. The
cutset conditioning algorithm computes an optimal cutset:

3

function 13 CutsetConditioning(γ,V0,a) returns a solution,
or “inconsistent”
1: γ′ :=ForwardChecking(a copy of γ,a)
2: if ex. v with D′

v=∅ then return “inconsistent”

3: if ex. v∈V0 s.t. a(v) is undefined then

4: select such v
5: else

6: a′ :=AcyclicCG(γ′)
7: if a′ 6=“inconsistent” then return a∪a′

8: else return “inconsistent”
9: for each d∈ copy of D′

v in some order do
10: a′ :=a∪{v=d}; D′

v :={d}
11: a′′ :=CutsetConditioning(γ′,V0,a

′)

12: if a′ 6=“inconsistent” then return a′′

13: else return “inconsistent”

4 Logic

Def. 46 (Syntax). Rules to decide what are legal statements
(formulas).

Def. 47 (Semantics). φ |= A: Rules to decide whether a
formula A is true for a given assignment φ .

Def. 48 (Model). Consists of a universe and an interpretation
(what connectives “do” and assignments).

Def. 49 (Entailment). If for every model φ
φ |=A⇒φ |=B

B is entailed by A, written A |=B.

Def. 50 (Calculus). A set of inference rules.

Def. 51 (Deduction). Statements that can be derived from
A using a calculus C (calculus), written A⊢CB.

Def. 52 (Soundness). A calculus C is sound if for all formulas
A,B it is true that A⊢CB⇒A |=B.

Def. 53 (Complete). A calculus C is complete if for all
formulas A,B it is true that A |=B⇒A⊢CB.

Def. 54 (Logical Systen). A logical system is a triple 〈L,K,|=〉,
where L is a formal language, K is a set and |=⊆K×L.

For a model M∈K and formula A∈L, we call A. . .
satisfied by M, iff M|=A
falsified by M, iff M6|=A
satisfiable in K, iff “∃M∈K.M|=A”
valid in K (written |=M), iff “∀M∈K.M|=A”
falsifiable in K, iff “∃M∈K.M6|=A”
unsatisfiable in K, iff “∀M∈K.M6|=A”

Def. 55 (Propositional logic, PL0). wff o(Vo) is the set of
“well-formed” (syntactically correct) formulas with variables
Vo. Its model 〈Do,I〉 consists of a universe Do= {T,F} and
an interpretation I, that assigns connectives values. The value
function Iφ :wwf o(Vo) 7→Do, assigns values to formulas.
PL0 is an example for a logical system 〈wwf o(Vo),K,|=〉,

where K is the set of variable assignments, and
φ |=A⇐⇒Iφ(A)=T .

Def. 56 (First order logic, FOL, PL1). wff ι(Σι) is the set of
“well-formed” terms over a signature Σι (function and skolem
constants — individuals). wff o(Σ) is the set of well-formed
propositions over a signature Σ (Σι plus connectives and
predicate constants — truth values).

Def. 57 (Natural deduction, ND1). A “natural deduction”
calculus for First order Logic:

A B
∧I

A∧B

A∧B
∧El

A

A∧B
∧Er

B

A
B

⇒I
A⇒B

A⇒B A
⇒E

B

=I
A=A

A=B C[A]p
=E

[B/p](C)

[B/X](A)
∃I

∃X.A

∃X.A

[c/X](A)

B
∃E

B

A
∀I

∀X.A

∀X.A
∀E

[B/X](A)

TND
A∨¬A

Def. 58 (Analytical tableaux). A tableau calculus for First
order Logic: Every formula is labelled as either true (AT) or
false (AF). To satisfy a formula Aα, it has to be shown that A
has a truth value of α. This is done by branching out using the
rules below. A branch is closed if it contains F, else open. A
tableau is closed (6= saturated)if all of it’s branches are closed.
A is valid iff there is a closed tableau with AF at the root.

A∧BT

T0∧
AT BT

A∧BF

T0∨
AF|BF

¬AT

T0
T
¬

AF

¬AF

T0
F
¬

AT

¬AT ¬AF

T0cut
F

∀X.AT C∈cwffι(Σι)
T1∀

[C/X](A)T

∀X.AF c∈(Σsk
0

\H)
T1∃

[c/X](A)F

A⇒BT

T1
T
⇒

AF|BT

A⇒BF

T1
F
⇒

AT BF

AT A⇒BT

T1
T
⇒

′

BT

Def. 59 (FOL Unification). For two terms A and B, a
unification is the problem of finding a substitution σ, s.t.
σ(A)=σ(B). A substitution σ is “more general” than θ, if
there is a substitution ϕ, s.t. θ=ϕ◦σ[W]. There is no more
general unifier than the “most general unifier” (mgu).

Def. 60 (Conjunctive Normal Form (CNF)). A formula is
in conjunctive normal form if it is a conjunction of disjunction
of literals.
For a FOL formula, it can be computed as follows:

1. Rewrite implications p⇒q into the form ¬p∨q.
2. Move negations inwards, so that only predicates are negated.
3. Rename variables bound by quantifiers making them unique.
4. Replace variables bound by existential quantifiers with

new “skolem functions” f ∈Σsk
k over all the free variables

X1,...,Xk in the quantified term:
∀X.A−→ [f(X1,...,X

k)/X](A)
5. Distribute ∨ inwards over ∧:

A∨(B∧C)−→(A∨B)∧(A∨C)

Def. 61 (FOL Resolution). The resolution calculus for FOL
operates on the CNF of a formula.
Like Tableau, it shows shows ¬T ⊢ F to prove T . T is

transformed into CNF and manipulated using the rules below.
If the empty disjunction (“clause set”, �) is derived, T has
been refuted.

PT∨A PF∨B
A∨B

PT∨A PF∨B σ=mgu(P,Q)

σ(A)∨σ(B)
4

Aα∨Bα∨C σ=mgu(A,B)

σ(A)∨σ(C)

Def. 62 (DPLL). The DPLL procedure is an algorithm to
find an interpretation satisfying a clause set.

4.1 Logic Programming

Def. 63 (Fact). A term that is unconditionally true.

Def. 64 (Rule). A term that is true if certain premises are true.

Def. 65 (Clause). Facts and rules are both clauses.

Def. 66 (Horn clause). A horn clause is a clause with at most
one positive literal.
The Prolog rule H :−B1,...,Bn is the implication B1∧···∧

Bn⇒H can be written as a horn clause ¬B1∨···∨¬Bn∨H.

4.2 Knowledge Representation

Def. 67 (Semantic Network). A directed graph representing
knowledge. It consist of nodes representing objects/concepts,
and edges representing relations between these, also called
“links”.

Def. 68 (Isa/Inst). Links may be labelled with “isa” (is a)
or “inst” (instance) to designate concept inclusion or concept
membership respectively. They propagate propertied encoded
by other links.

Def. 69 (TBox). The sub-graph of a semantic network
between concepts is called terminology, or TBox. It is spanned
by isa links.

Def. 70 (ABox). The sub-graph of a semantic network
between objects is called assertions, or ABox. It is spanned
by inst links and relations between objects.

Def. 71 (Semantic Web). A collaborative movement led by
the W3C promoting inclusion of semantic content into web
pages. One example is RDF (Resource Description Framework),
used for describing resources on the web.

Def. 72 (Ontology). A logical system 〈L,K,|=〉 and “concept
axioms” about individuals, concept and relations. Semantic
networks are ontologies.

Def. 73 (Description Logic). A formal system for talking
about sets and their relations. A description logic D has a
D-ontology, consisting of a TBox and ABox.

Def. 74 (ALC). A description logic more expressive than
PL0, but less complex than FOL. It relates “Concepts” (classes
of objects, C) with “Roles” (binary relations, R). Its Syntax
is as follows:

FALC :=C |⊤|⊥|FALC |FALC⊓FALC |FALC⊓FALC |

∃R.FALC |∀R.FALC

where ⊤ and ⊥ are the special concepts designating “all” and
“none” respectively.

Def. 75 (ALC Tableau Calculus). The Tableau calculus for
ALC:

x :c x : c̄
T⊥

⊥

x :φ⊓ψ
T⊓

x :φ x :ψ

x :φ⊔ψ
T⊔

x :φ |x :ψ

x :∀R.φ xRy
T∀

y :φ

x :∃R.φ
T∃

xRy y :φ

5 Planning

Def. 76 (Planning language/task). A logical description of
the components of a search problem:
• a set of possible states
• an initial state I
• a goal condition G
• a set of actions A in terms of preconditions and effects.
constituting a planning task. This approach allows a solver
to gain insight into the problem structure, resulting in a
structured world representation.

Def. 77 (Satisficing planning). A procedure that takes as
input a planning problem and outputs a plan or “unsolvable”,
if no such plan exists.

Def. 78 (Optimal planning). A procedure that takes as
input a planning problem and outputs an optimal plan or
“unsolvable”, if no such plan exists.

Def. 79 (STRIPS planning task). This is a encoding of a
planning problem using a quadrupel Π=〈P,A,I,G〉 where
• P is a finite set of facts
• A is a finite set of actions, each given as a triple of
“preconditions”, an “add list” and a “delete list”.

• I⊆P is the initial state
• G⊆P is the goal.
Satisficing planning for STRIPS is called “PlanEx”, and optimal
planning is called “PlanLen”, that tries to find the shortest plan.
A heuristic for Π with states S is function h :S 7→N∪∞

so that h(g)=0 for a goal state g. The perfect heuristic h∗

assigns every s∈S the length of the shortest path to g or ∞
if non-existent.

Def. 80 (Partial Order Planning). A partially ordered plan is

a collection of causal links S
p
→T and temporal ordering S≺T

where p is an affect of S and precondition of T . If the causal links
and temporal ordering induce a partial ordering, it is called “con-
sistent”. If every precondition is achieved, it is called “complete”.

Partial order planning is the process of computing a complete
and consistent partially order plan.

Def. 81 (Delete relaxation). This is a relaxation Π+ of a
given STRIPS task Π all actions have empty delete lists.

Def. 82 (Relaxed plan). For a STRIPS task Π=〈P,A,I,G〉
and state s, then 〈P,A,{s},G〉+ is a relaxed plan for I/Π.
PlanEx for relaxed problems is called PlanEx+.

Def. 83 (h+-heuristic). For a planning task Π= 〈P,A,I,G〉,
the optimal heuristic calculates the length of the optimal
relaxed plan for s or ∞ if no plan exists. h+ is admissible. The
heuristic hFF approximates h+, since calculating h+ is in NP.

Def. 84 (Real World Planning). When planning in real-world
situations, the agent the task environment is partially observ-
able and non-deterministic, which invalidates the previous
assumptions. Variations on planning try to overcome this:
Conditional Extend the possible action in plans by

conditional steps that execute sub-plans conditionally.
Conformant Tries to find a plan without sensing, instead

relying on the its (fully observable) belief states.
Contingent Generate a plan with conditional branching

based on percepts.

Def. 85 (Online Search). Interleaving of search and actions,
basing action on incoming perceptions. A planner P can be
turned into an online problem server by adding an action
Replan(g), that re-starts P in the current state with goal g.

5

	Agents
	Search
	Adversarial Search

	Constraint Satisfaction Problems
	Logic
	Logic Programming
	Knowledge Representation

	Planning

