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In this document I intend to briefly summarise the work related to my work-in-progress
master’s thesis (“Semantics of Categorical Nondeterministic Automata in a Topos”) up until this
point.

1 Problem Statement
The semantics of a (non-deterministic) automaton is the language, i.e. the words it accepts as
input. Besides the conventional set-theoretical formalisation, we want to consider the following:

1. In the context of a topos E , a coalgebra for a non-deterministic automaton is
FQ = Ω × P (Q)Σ,

where Ω is the subobject classifier and P (−) is the covariant power-object functor.
The accepted words of this construction are describable using “EM-style semantics” [JSS12],
that require the functor F to be the composition of a functor and a monad. This is the
case, for the GQ = 2 × QΣ and the P (−) (where unit and multiplication are analogous
to the power-sets monad). A morphism J−K : Q Σ⋆ then describes the accepted words
starting from some state.

2. A “categorical nondeterministic automata” [FMU23] requires a category C to have sub-
objects, epi-mono splits and finite limits (all of these properties are granted by toposes).
The general idea is that we have an object Q ∈ Ob(C ) of states and Σ ∈ Ob(C ) of letters
in our input alphabet. For each word-length, we consider subobjects of (Q × Σ × Q)n, one
designating the legal transitions, the other transitions that begin in an initial, and end in an
accepting state. The “accepted runs” results from the pullback of the two aforementioned
subobjects. By taking the image of the projection that extracts letters out from the runs,
we have a description of the accepted words.

The question is if these two formulations are equivalent, specifically when assuming that
the base category is a topos E . This structure allows us to argue within the internal logic of E ,
simplifying the proofs.

2 Necessary Background and Noteworthy Properties of Toposes
Definition 1 (Topos). A category E is elementary topos [MM12, p. 161], has all finite limits
and an object Ω (subobject), with a function that assigns each object A : E to an object PA : E,
such that for any object B : E

SubE (A) ∼= HomE (A, Ω) (1)
HomE (A × B, Ω) ∼= HomE (B, PA) (2)

which is natural in A.
Definition 2 (Internal Logic). Admitted.
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Figure 1: Overview of the structure required to define J−K, given a determination det ⟨o, t⟩ of a
NDA in E

3 Coalgebraic Trace Semantics in a Topos
The semantics of a coalgebra is a morphism in the base category that maps a state to a rep-
resentation of the accepted words. In a topos E this means a coalgebra FQ = Ω × QΣ has a
morphism

J−K : Q Σ⋆. (3)

Recalling that in Sets the carrier of the final coalgebra of FQ = 2 × QΣ is the powerset of
words ℘ (Σ⋆), we notice that the terminal arrow from an arbitrary coalgebra to the final coalgebra
bears similarities with J−K from above.

3.1 Necessary Structure of E

It remains open what Σ⋆ means. In Sets we would expect X⋆ to be the free monoid over a set
X.

Definition 3 (Countably Extensive). If in a category C X⋆∼=
∐

n∈N Xn, then we call C “countably
extensive”. [FMU23, p. 10]

For this to be possible, a category requires countable coproducts. This is something an
elementary topos does not have by default, as it is only required to have finite limits. Therefore
it appears we have to strengthen our assumptions and imbue E with countable coproducts before
proceeding.

Furthermore, it is necessary to define the extension of a function f : A X along a free
monoid.

3.2 Definition of J−K

Definition 4 (Eilenberg-Moore category). Admitted.

Definition 5 (Eilenberg-Moore Law). Admitted.

How can we ensure the existence of an final coalgebra in E , analogous to the canonical
one in Sets? One approach is to translate the results of Jacobs, et. al. [JSS12], from Sets
to E . This states, that for an endofunctor G and a monad (T, η, µ), for which a definition 5
ρ : TG ⇒ GT holds1, the coalgebra on G is the same as of Ĝ, i.e. the lifted functor from E to
the Eilenberg-Moore category (c.f. definition 4) on T .

1Note the meaning of this natural transformation in Sets: It states that given a set of deterministic automata,
we can either check if any of these accept a word, or transform these into a single non-deterministic automata and
run that.
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In E , we take GQ = Ω × QΣ and TQ = PQ. It is possible to define ρ component-wise,

ρQ : P
(
Ω × QΣ

)
Ω × PQΣ ρQ(A) :=

〈
ρ1

Q, ρ2
Q

〉
(4)

ρ1
Q : P

(
Ω × QΣ

)
Ω ρ1

Q(A) :=∃ ⟨ε, δ⟩ ∈ A. ε = true (5)

ρ2
Q : P

(
Ω × QΣ

)
PQΣ ρ2

Q(A) :=σ 7→ { q : PQ | ∃ ⟨ε, δ⟩ ∈ A. δ(σ) = q } (6)

Theorem 1 (EM-law). There exists a natural transformation ρ : TG ⇒ GT , for which distribu-
tively of the unit

ρX ◦ ηF X = F (ηX) (7)

and of multiplication,

ρX ◦ µF X = F (µX) ◦ ρPX ◦ PρX (8)

hold.

Proof. We can express the statement in the internal logic of E .
Admitted. ■

Due to a bijective correspondence between the existence of ρ2 and a lifting from E to
EM(P) [JSS12], we can now lift the coalgebra Q Ω × PQΣ in E to PQ Ω × PQΣ in
EM(P). The terminal map in EM(P) turns out to be the intuitive definition,

h(Q) =
{

σ⃗ ∈ Σ⋆
∣∣∣ ∃ q ∈ Q. o(t(q)(σ⃗)) = true

}
, (9)

as also seen in fig. 1. The jump to an internal definition of

JqK =
{

σ⃗ ∈ Σ⋆
∣∣∣ o(t(q)(σ⃗)) = true

}
(10)

is easy, just as arguing that the internal logic of E grants us

J−K = h ◦ ηQ. (11)

4 Internal Description of a Categorical Automaton
The second description of a non-deterministic automaton requires a category E with certain
structure:

• All finite limits,

• Arbitrary subobjects m : S A, i.e. equivalence classes of monos [MM12, p. 11],

• Epi-mono factorisation [MM12, p. 185],

but not properties like being countably extensive (definition 3). Any elementary topos satisfies
these conditions.

We define a NDA, as a tuple A = (Q, Σ, δ, mI , mF ), where Q, Σ ∈ Ob(E ), and δ : Q × Σ ×
Q (transitions), mI : I Q (initial states) and mF : F Q (final states) are subobjects.

As E is not necessarily countably extensive, meaning we cannot construct Σ⋆ ∼=
∐

i Σi, we
define a language as a family of subobjects

L :=
(
m(L)

n : L(n) Σn
)

n∈N
(12)

instead of Σ⋆. To define a language, we have to define the subobjects individually for each n.
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L(0)(A) I ∩ F I
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L(A)

mF

mI
!

e0,A

mI

mF

Figure 2: Commutative diagrams describing a categorical automaton fur n = 0

L(n)(A) AccRun(n)
A δn

Σn I × (Σ × Q)n−1 × Σ × F (Q × Σ × Q)n

Q × (Σ × Q)n−1 × Σ × Q Q × (Σ × Q × Q)n−1 × Σ × Q

m
(n)
L(A) m

(n)
δ

dn,Aen,A

mn
δ

dn,Apn,A

mI×id(Σ×Q)n−1×Σ×mF

idQ×(idΣ×∆Q)n−1×idΣ×idQ

∼=

Figure 3: Commutative diagrams describing a categorical automaton for n ≥ 1

4.1 Accepting the Empty Word

On a high-level, we know that a NDA accepts the empty word ϵ, if an initial state is also final.
Intuitively, this is a subobject as well (the pullback of mI and mF ), describing the “accepted runs”
of length n = 0. Recall that in a topos, each subobject m : S A corresponds to a predicate
φ = char S [MM12, p. 165]. This gives us a convenient, internal description of the accepting runs:

I ∩ F = { q ∈ Q | (char I)(q) ∧ (char F )(q) } (13)

A map from I ∩ F to the accepting words Σ0 ∼= 1, as seen in fig. 2 has an image, with the
internal description

L(0)(A) :=
{

{ϵ} if I ∩ F ≇∅
{ } otherwise

(14)

4.2 Accepting Non-Empty Words

For a non-empty word of length n, an accepting run is a sequence of n transitions, beginning
in an initial state, connected by Σs in δ and ending in a final state. An external description is
given by fig. 3, where AccRun(n)

A is the pullback of two subobjects into (Q × Σ × Q)n,

• mn
δ : an n-times product of δ, and

• dn,A: an “injection” from I ×(Σ×Q)n−1 ×Σ×F . The domain of this map is by associativity

I × Σ × Q × · · · × Q × Σ × F︸ ︷︷ ︸
n-many Σ

,

i.e. a “chain” of transitions that are reordered into the intended form.
2The direction that interests us, is that we can define Ĝ = ρX ◦ G, such that it behaves as intended.
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4.2.1 Internal Description of Accepting Runs

We can describe the accepted runs in the internal language of E , by formalising the above
description

An,A =

 a ∈ δn

∣∣∣∣∣∣∣∣∣ π1(π1(a)) ∈ I︸ ︷︷ ︸
begins in an
initial state

∧ π3(πn(a)) ∈ F︸ ︷︷ ︸
ends in final state

∧ ∀ 1 ≤ i < n. π3(πi(a)) = π1(πi+1(a))︸ ︷︷ ︸
all transitions are legal

 . (15)

Theorem 2. An,A is a pullback of dn,A and mn
δ .

The statement involves the following subclaims:

1. There exist two morphisms dn,A : An,A δn and mn
δ : An,A I × (Σ × Q)n−1 × Σ × F ,

for which mn
δ ◦ dn,A = mn

δ ◦ dn,A holds, and

2. for any other object P that satisfies the UMP of a pullback for dn,A and mn
δ , there is a

unique morphism from P to An,A.

Proof. We consider the subclaims separately,

1. The morphisms are

dn,A(a) = a (16)

mn
δ (a) =

〈
π1 ◦ π1, ⟨π2, π3⟩n−1 , π2 ◦ πn, π3 ◦ πn

〉
(a). (17)

It is easy to see that dn,A composed with mn
δ is just an injection into (Q × Σ × Q)n, seeing

as both are respectively just injections. As for mn
δ (a), we have to verify that

⊢ dn,A ◦ mn
δ = mn

δ ◦ dn,A = ι(Q×Σ×Q)n , (18)

which can be done in the internal logic of E 3: The
choice
of nota-
tion is a
cludge
for now,
some-
thine
else
would
be
prefer-
able

dn,A ◦ mn
δ

=
(
mI × (idΣ × ∆Q)n−1 × idΣ × mF

)
◦

〈
π1 ◦ π1, ⟨π2, π3⟩n−1 , π2 ◦ πn, π3 ◦ πn

〉
=

〈
mI ◦ π1 ◦ π1, (idΣ × ∆Q)n−1 ◦ ⟨π2, π3⟩n−1 , idΣ ◦ π2 ◦ πn, mF ◦ π3 ◦ πn

〉
=

〈
mI ◦ π1 ◦ π1, ⟨π2, ∆Q ◦ π3⟩n−1 , π2 ◦ πn, mF ◦ π3 ◦ πn

〉
We can drop the injections, knowing that for any a ∈ An,A, π1(π1(a)) ∈ I and π3(πn(a)) ∈ F ,

=
〈
π1 ◦ π1, ⟨π2, ∆Q ◦ π3⟩n−1 , π2 ◦ πn, π3 ◦ πn

〉
∼=

〈
π1 ◦ π1,

n−1×
i=1

⟨π2, π3, π3⟩ ◦ πi, π2 ◦ πn, π3 ◦ πn

〉

=
〈

π1 ◦ π1,
n−1×
i=1

⟨π2 ◦ πi, π3 ◦ πi, π3 ◦ πi⟩ , π2 ◦ πn, π3 ◦ πn

〉

As for any a : An,A, we know that ∀ 1 ≤ i < n. π3(πi(a)) = π1(πi+1(a)) is satisfied, we can
use the associativity of products to infer

∼=
n×

i=1
⟨π2 ◦ πi, π3 ◦ πi, π3 ◦ πi⟩ =

n×
i=1

⟨π2, π3, π3⟩ ◦ πi =
n×

i=1
πi

=ι(Q×Σ×Q)n = mn
δ ◦ dn,A
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2. As it is known that toposes have all finite limits, hence Cite a
source
or
demon-
strate
why this
is a pull-
back
(for two
monos)

Pb (dn,A, mn
δ ) = { r ∈ (Q × Σ × Q)n | r ∈ Im(dn,A) ∧ r ∈ Im(mn

δ ) } (19)

is a valid, general description of a pullback in E .
We can argue the case that An,A

∼= Pb (dn,A, mn
δ )in the internal logic of E by extensionality

over r : (Q × Σ × Q)n ⊢

r ∈ An,A

⇐⇒ r ∈ { a ∈ δn | . . . } (defn.)
⇐⇒ π1,1(r) ∈ I ∧ π3,n(r) ∈ F ∧ ∀ 1 ≤ i < n. π3,i(r) = π1,i+1(r) ∧ r ∈ δn

⇐⇒ (∃ a : I × · · · × F. dn,A(a) = r) ∧ (∃ l : δn. mn
δ (l) = r) (†)

⇐⇒ r ∈ { r | (∃ a. dn,A(a) = r) ∧ (∃ l. mn
δ (l) = r) }

⇐⇒ r ∈ { r | ∃ a. dn,A(a) = r } ∧ r ∈ { r | ∃ l. mn
δ (l) = r }

⇐⇒ r ∈ Im(dn,A) ∧ r ∈ Im(mn
δ )

⇐⇒ r ∈ { r ∈ (Q × Σ × Q)n | r ∈ Im(dn,A) ∧ r ∈ Im(mn
δ ) }

⇐⇒ r ∈ Pb (dn,A, mn
δ ) (undefn.)

The (†) inference constitutes the intuitive yet critical step in this chain, specifically

π1,1(r) ∈ I ∧ π3,n(r) ∈ F ∧ ∀ 1 ≤ i < n. π3,i(r) = π1,i+1(r)
⇐⇒ ∃ a : I × (Σ × Q)n−1 × Σ × F. dn,A(a) = r,

(20)

as r ∈ δn ⇐⇒ ∃ l : δn. mn
δ (l) = r ought to be clear.

By considering dn,A component-wise (mI × (idΣ × ∆Q)n−1 × idΣ × mF ): This ar-
gument
is not
rigorous
enough

mI : By construction, this matches π1,1(r)
(idΣ × ∆Q)n−1: Recall that to the ∼=-step in fig. 3 uses associativity of products to re-

parenthesise the product. Due to ∆Q, the string of unparentheses objects will have
π3k = π3k+1, for 1 ≤ k < n, matching the internal description.

idΣ: The formula does not describe this, as there are no restrictions on what input consti-
tutes a legal run.

mF : By construction, this matches π3,n(r) ■

4.2.2 Internal Description of Accepted Words

The image of a map πn,A from AccRun(n)
A to Σn, that projects the Σ-components out may be

defined as the compositions

pn,A ◦ m
(n)
δ , or πn

2 ◦ mn
δ ◦ dn,A, (21)

as given in fig. 3, or simply given An,A from eq. (15)

πn,A(a) = πn
2 (a) (22)

For a n > 0, the image of πn,A denotes the accepted words. In the internal language of E , we
can describe this on a high-level by

Im(πn,A) =
{

σ⃗ ∈ Σn
∣∣∣ ∃ a ∈ AccRun(n)

A . πn,A(a) = σ⃗
}

(23)

or by expanding definitions, L(n)(A) = Is there
any util-
ity to
this
point?

{ σ⃗ ∈ Σn | ∃ a ∈ δn. π1,1(a) ∈ I ∧ π3,n(a) ∈ F ∧ (∀ i < n. π3,i(a) = π1,i+1(a)) ∧ πn
2 (a) = σ⃗ } . (24)

3In the following,×i
fi is notation for ⟨f1, . . . , fn⟩.
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5 Comments & Considerations on the Future Work
Given the above, we want to relate eq. (10) for some q ∈ Q to eq. (15). Both representations can
share the state space Q and the input alphabet Σ. Yet note that the accepted words cannot be
directly compared, as Im(πn,A) describes only the accepted words of length n. Therefore, it is
necessary to consider each n > 0 separately

Im(πn,A) ?= { σn ∈ Σn | o(tn(q)(σn)) = true } , (25)

whereas for n = 0

I ∩ F ≇∅ ?⇐⇒ o(q) = true . (26)

Point of Note: Im(πn,A) depends on A (specifically the subobjects δ, I and F ), while the
coalgebraic representation involve o and t. Any further progress in proving the above equivalences
depends on a reliable translation of the one into the other. Would

it be
possible
to have
some
third
repre-
senta-
tion, e.g.
in Sets
and map
that to
the two
other?

5.1 Categorical Automata into Coalgebras

Given δ, I and F we can define a coalgebra over the same state space Q, with the initial state I.
The structure morphism ⟨o, t⟩ : Q Ω × P (Q)Σ is easily construct the individual morphisms
element-wise:

o(q) = q ∈ F (27)
t(q) = σ 7→

{
q′ ∣∣ (q, σ, q′) ∈ δ

}
(28)

5.2 Coalgebras into Categorical Automata

Given a Coalgebra ⟨o, t⟩ in a state q ∈ Q, be can describe an equivalent automaton constituting

I = {q} (29)

F =
{

q′ ∈ Q
∣∣∣ ∃ σ⃗ ∈ Σ⋆. t(q)(σ⃗) = q′ =⇒ o(q′) = true

}
(30)

δ =
{

(q′, σ, q′′)
∣∣∣ ∃ σ⃗ ∈ Σ⋆. t(q)(σ⃗) = q′ =⇒ t(q′)(σ) = q′′

}
(31)

5.3 Equivalence of Descriptions

An intuitive condition for equivalence would be that converting a categorical automaton into a
coalgebra and back (or vice versa) results in the same automaton. Note that this fails at least if
there exist any states that are not accessible from the initial state, as eq. (31) will reconstruct
only the “reachable” parts of δ. It is therefore at the very least necessary to ease the conditions
and not require a full isomorphism.
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