
Internalization of a Categorical Automata
Philip Kaluđerčić
philip.kaludercic@fau.de

16Jul24, typeset on July 26, 2024

Frank, et. al.1 define a non-deterministic automaton in a category C as the quintuplet of objects and
subobjects

A = (Q ∈ C , Σ ∈ C , mδ : δ Q × Σ × Q, mI : I Q, mF : F Q).

The accepted language of an automaton A is L(A), morally a subobject of Σ⋆. If C lacks countable
coproducts, which would be necessary to give Σ⋆ =

∐
n∈N Σn, it is possible to define L(A) “length-wise”, in

which case we presuppose a definition of a language as a family of monos

L :=
(

m(L)
n : L(n) Σn

)
n∈N

For the empty word, we consider the following diagram, that constructs the pullback I ∩ F (designating
the initial states that are also accepting), and the image of I ∩ F 1,

L(0)(A) I ∩ F I

1x F Q

m
(0)
L(A)

mF

mI
!

e0,A

mI

mF

For non-empty words, the notion of an “accepting run” AccRun(n)
A of an automaton A for words σ1 . . . σn

is given by

L(n)(A) AccRun(n)
A δn

Σn I × (Σ × Q)n−1 × Σ × F (Q × Σ × Q)n

Q × (Σ × Q)n−1 × Σ × Q Q × (Σ × Q × Q)n−1 × Σ × Q

m
(n)
L(A) m

(n)
δ

dn,Aen,A

mn
δ

dn,Apn,A

mI ×id(Σ×Q)n−1×Σ×mF

idQ×(idΣ×∆Q)×idΣ×idQ

∼=

where pn,A is the projection discarding all states from transitions. The general idea is that an accepting run is
a chain of transitions over the subobject of legal (δn) one-step transitions δ, connecting an initial state to an
accepting state (I × · · · × F ). The pullback of dn,A and mn

δ acts as a generalisation of intersections in Sets,
resulting in legal, accepting runs. By projecting (pn,A) out the inputs of type Σ, we get the accepted words.

Categorical Automata in a Topos A topos E provides all the necessary structure to define a categorical
automaton:

• All finite limits, including e.g. to construct the pullback AccRun(n)
A

• Arbitrary subobjects m : S A

• General Epi-Mono Factorisation2

and therefore of interest if we can give a

m
(n)
A :

{
σ1 . . . σn

∣∣ ???
}

Σn

description of a language, such that the above diagram commutes, i.e. the subobject is the image of pn,A ◦ m
(n)
δ .

1Florian Frank, Stefan Milius, and Henning Urbat. Positive Data Languages. 2023. arXiv: 2304.12947 [cs.FL].
2Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to topos theory. Springer Science

& Business Media, 2012, p. 185.

1

https://arxiv.org/abs/2304.12947


Base case n = 0 Here the question is, whether ϵ is part of the language or not. Note here that Q is an
internal latice in E .3

As m
(0)
L(A) has 1 as its codomain it is unique up to isomorphism. As ! = m

(0)
L(A) ◦ e0,A, e0,A is also unique up

to iso. The question is therefore, if the domain of e0,A is 0 (when F and I are disjunct subobjects, F ∩ I ∼= 0),
in which case L(0)(A) ∼= 0 as well, meaning that ϵ ̸∈ L(A).

Alternatively if I and F are not disjunct subobjects (meaning there is an initial state that is also accepting,
i.e. ϵ ∈ L(A)), we want

L(0)(A) = ηΣ⋆(ϵ) = {ϵ} = { w | w = ϵ }

to hold. We can equivalently characterise the above as

L(0)(A) = { ϵ | F ∩ I ≇ 0 } .

Definition of L
(n)
A and AccRun(n)

A for n > 0 The definition of AccRun(n)
A , as the pullback of m

(n)
δ and

dn,A, gives a straightforward expression in the internal logic of E ,

AccRun(n)
A =

{
a

∣∣∣ dn,A(m(n)
δ (a)) = m

(n)
δ (dn,A(a))

}
.

With some foreknowledge, we can describe the image of m
(n)
L(A) as

L(n)(A) :=
{

w
∣∣∣ ∃ r : (Q × Σ × Q)n. w = p′

n,A(r) ∧ Accp(n)
A (r)

}
where

Accp(n)
A (r) := ∃ t : I × (Σ × Q)n−1 × Σ × F. r ∈ mn

δ (δn) ∩ dn,A(t)

and p′
n,A = πn

2 (the second projection under a nary-product), such that

I × (Σ × Q)n−1 × Σ × F

Σn (Q × Σ × Q)n

pn,A
dn,A

p′
n,A

commutes, which is easy to see since dn,A preserves all Σ by identities or isomorphisms.

To verify the validity of this description, i.e. that m
(n)
L(A) is the smallest subobject through which pn,A ◦ m

(n)
δ

can factor, we can take the description of an image in the internal logic

Im(f : A B) = { b : B | ∃ a : A. f(a) = b } ,

and attempt to prove the equivalence of subobjects

⊢ Im
(

pn,A ◦ m
(n)
δ

)
= L(n)(A).

It is at this point that we have to provide a concrete and non-recursive definitions of m
(n)
δ and

AccRun(n)
A . One option is to take AccRun(n)

A := (Q × Σ × Q)n, such that π1(π1(AccRun(n)
A )) is initial

and π3(πm(AccRun(n)
A )) is final, while

π3(πi(AccRun(n)
A )) = π1(πi+1(AccRun(n)

A )) ∀1 ≤ i < n

and have m
(n)
δ be the destructing map that requires the first state to be in I and the final state in F , and

dn,A is a simple injection.
3MacLane and Moerdijk, Sheaves in geometry and logic: A first introduction to topos theory , p. 198.

2



Note: Due to the communing property of p′
n,A, we can equivalently consider Im(p′

n,A ◦ dn,A ◦ m
(n)
δ ). We

can express ℓ := p′
n,A ◦ dn,A ◦ m

(n)
δ = πn

2 (since dn,A ◦ m
(n)
δ ought to equal idQ×Σ×Q) in the internal

logic as
ℓ(r) = { w | w = πn

2 (r) } ,

using which we can define the language as

{ w | ∃ r. ℓ(r) = w } =
{

w : Σn
∣∣∣ ∃ r : AccRun(n)

A ⊆ (Q × Σ × Q)n. πn
2 (r) = w

}
: P (Σn) .

Equivalence of subobjects With the above we can investigate if the internal descriptions, for n > 0:
⊢ Im(πn

2 ) = L(n)(A)
w : Σn ⊢ w ∈ Im(πn

2 ) ⇐⇒ w ∈ L(n)(A)

w : Σn ⊢ w ∈ { w | ∃ a. πn
2 (a) = w } ⇐⇒ w ∈

{
w

∣∣∣ ∃ r. w = πn
2 (r) ∧ Accp(n)

A (r)
}

w : Σn ⊢ ∃ a : AccRun(n)
A . πn

2 (a) = w ⇐⇒ ∃ r : (Q × Σ × Q)n
. w = πn

2 (r) ∧ Accp(n)
A (r)

w : Σn ⊢ ∃ r : (Q × Σ × Q)n
. πn

2 (r) = w ∧ Accp(n)
A (r) ⇐⇒ ∃ r : (Q × Σ × Q)n

. w = πn
2 (r) ∧ Accp(n)

A (r)

where the last inference is valid, since Accp(n)
A is the characteristic morphism that recognises if a r : (Q × Σ × Q)n

is an accepted run.
This fact remains open to proof:

⊢ AccRun(n)
A =

{
r : (Q × Σ × Q)n

∣∣∣ Accp(n)
A (r)

}
⊢

{
a

∣∣∣ dn,A(m(n)
δ (a)) = m

(n)
δ (dn,A(a))

}
=

{
r : (Q × Σ × Q)n

∣∣∣ Accp(n)
A (r)

}
The following step intend to address the informality, in that the right-hand side is of the type AccRun(n)

A , while
the left-hand side has the super-type (Q × Σ × Q)n. We do this by “up-casting”:

⊢
{

r
∣∣∣ ∃ a. a = r ∧ dn,A(m(n)

δ (a)) = m
(n)
δ (dn,A(a))

}
=

{
r : (Q × Σ × Q)n

∣∣∣ Accp(n)
A (r)

}
r : (Q × Σ × Q)n ⊢ ∃ a. a = r ∧ dn,A(m(n)

δ (a)) = m
(n)
δ (dn,A(a)) ⇐⇒ ∃ t. r ∈ mn

δ (δn) ∩ dn,A(t)
Descending back into irrigorousness, we can disregard the morphisms that serve as injections from subobjects,

r : (Q × Σ × Q)n ⊢ ∃ a. a = r ∧ dn,A(m(n)
δ (a)) = a ⇐⇒ ∃ t. r ∈ δn ∩ dn,A(t)

r : (Q × Σ × Q)n ⊢ ∃ a : AccRun(n)
A . r = dn,A(m(n)

δ (a)) ⇐⇒ ∃ t. r ∈ δn ∩ dn,A(t)

Using the property that in a pullback Pb(a, b), for any a : A C, b : B C and a fixed β : B (see below),

γ : C, β : B ⊢ ∃ π : Pb(a, b). a(b(π)) = γ ⇐⇒ ∃ α : A. γ ∈ a(α) ∩ b(β), (†)

we can conclude the proof with

r : (Q × Σ × Q)n ⊢ ∃ a : AccRun(n)
A . r = a ⇐⇒ ∃ a : AccRun(n)

A . r = dn,A(m(n)
δ (a))

r : (Q × Σ × Q)n ⊢ ∃ a. r = a ⇐⇒ ∃ a. r = a ■

Proof of the remaining assumption It remains to argue that (†) is a valid claim. The intuition is
pullbacks in E correspond to intersections in the internal logic of E .

γ : C, β : B ⊢ ∃ π : Pb(a, b). a(b(π)) = γ ⇐⇒ ∃ α : A. γ ∈ a(α) ∩ b(β)
We begin by unfolding the definition of “∩”,

γ : C, β : B ⊢ ∃ π : Pb(a, b). a(b(π)) = γ ⇐⇒ ∃ α : A. γ ∈ { ζ : C | ζ ∈ a(α) ∧ ζ ∈ b(β) }
and of

Pb(a, b) =
{

ϖ : C
∣∣ a(b(ϖ)) = b(a(ϖ))

}
,

we can take α = b(ϖ) for a a(ϖ) = β. This gives us
γ : C, β : B ⊢ ∃ ϖ : C. a(ϖ) = β =⇒ a(b(ϖ)) = γ ⇐⇒ γ ∈ a(b(x)) ∧ γ ∈ b(β)

TODO

3



A different approach Take σ1 . . . σn : Σn ⊢, then

σ1 . . . σn ∈ Im(πn
2 )

⇐⇒ σ1 . . . σn ∈
{

σ1 . . . σn

∣∣∣ ∃ a : AccRun(n)
A . σ1 . . . σn = πn

2 (a)
}

⇐⇒ ∃ a : AccRun(n)
A . σ1 . . . σn = πn

2 (a)

⇐⇒ ∃ a : AccRun(n)
A . σ1 . . . σn = πn

2 (a) (‡)
⇐⇒ ∃ r : (Q × Σ × Q)n. σ1 . . . σn = πn

2 (r) ∧ Accp(n)
A (r)

⇐⇒ σ1 . . . σn ∈
{

σ1 . . . σn

∣∣∣ ∃ r : (Q × Σ × Q)n. σ1 . . . σn = πn
2 (r) ∧ Accp(n)

A (r)
}

⇐⇒ σ1 . . . σn ∈ L(n)(A)

where (‡) requires

r : (Q × Σ × Q)n ⊢ Accp(n)
A (r) ⇐⇒ ∃ a : AccRun(n)

A . ι(Q×Σ×Q)n(a) = r

to hold. Intuitively this should indicate that Accp(n)
A is a faithful predicate, recognising if a r : (Q × Σ × Q)n

is part of the intersection of legal (mn
δ ) and accepting (dn,A) runs, i.e. in the pullback of the subobjects mn

δ

and dn,A.
Keeping in mind that for a A, δn is fixed, this is equivalent to stating that

r : (Q×Σ×Q)n ⊢ ∃ t : I×· · ·×F. r ∈ mn
δ (δn)︸ ︷︷ ︸
legal

∩ dn,A(t)︸ ︷︷ ︸
acc.

⇐⇒ ∃ π : Pb(mn
δ , dn,A). dn,A(π) = δn =⇒ r = π

or generally for subobjects a : A C, b : B C and a fixed b : B,

γ : C, β : B ⊢ ∃ α : A. γ ∈ a(α) ∩ b(β) ⇐⇒ ∃ π : Pb(a, b). a(π) = β =⇒ ιC(π) = γ

(Note to self: Does γ ∈ a(α) ∩ b(β) even type? I don’t think so, since a(α) : C, and we cannot intersect on
an element of C!) So the actual definition of Accp(n)

A should be

Accp(n)
A (r) := ∃ a : I × · · · × F. dn,A(a) = r

4


