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Frank, et. al.’ define a non-deterministic automaton in a category ¢ as the quintuplet of objects and
subobjects

A=(Qeb,XebC,ms:6>—>QxLxQ,mr: I —Q,mp: F— Q).

The accepted language of an automaton A is L(A), morally a subobject of ¥*. If € lacks countable
coproducts, which would be necessary to give ¥* = [, .y X", it is possible to define L(A) “length-wise", in
which case we presuppose a definition of a language as a family of monos
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For the empty word, we consider the following diagram, that constructs the pullback I N F' (designating

the initial states that are also accepting), and the image of INF — 1,
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For non-empty words, the notion of an "accepting run” AccRun(;) of an automaton A for words o1 ...0,
is given by
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where p,, 4 is the projection discarding all states from transitions. The general idea is that an accepting run is
a chain of transitions over the subobject of legal (™) one-step transitions d, connecting an initial state to an
accepting state (I x --- x F'). The pullback of d,, 4 and m} acts as a generalisation of intersections in Sets,
resulting in legal, accepting runs. By projecting (p,, 4) out the inputs of type X, we get the accepted words.

Categorical Automata in a Topos A topos & provides all the necessary structure to define a categorical
automaton:

= All finite limits, including e.g. to construct the pullback AccRun(X)
= Arbitrary subobjects m: S — A
= General Epi-Mono Factorisation?

and therefore of interest if we can give a

mX"): {01...0n| 2?7 } — X"

description of a language, such that the above diagram commutes, i.e. the subobject is the image of p,, 4 omf;”).
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Base case n = (0 Here the question is, whether € is part of the language or not. Note here that () is an
internal latice in &.3

As mf()A) has 1 as its codomain it is unique up to isomorphism. As ! = mg)()A) 0eg,A, €o,4 is also unique up
to iso. The question is therefore, if the domain of e 4 is 0 (when F and I are disjunct subobjects, F'N I =0),
in which case L(®)(A) =0 as well, meaning that € ¢ L(A).

Alternatively if I and F' are not disjunct subobjects (meaning there is an initial state that is also accepting,
i.e. e € L(A)), we want

LOA) = ns-(e) = {e} = {w|w=¢}
to hold. We can equivalently characterise the above as
LOUA)={e|FNI%0}.

Definition of LX and AccRun); (") for n >0 The definition of AccRunA ™ as the pullback of m(") and

dn, 4, gives a straightforward expression in the internal logic of &,

AccRuny) = { o | dna(m (@) = mf (@ () }

With some foreknowledge, we can describe the image of m(L"()A) as

E(”)(A) {w‘ﬂr (@ xXxQ)". wfpnA( )/\Accp(")( )}
where
Accpl(r) =3t T x (S x Q)" ' x £ x F.r € my(6™) Ny a(t)

and p/, , = w4 (the second projection under a nary-product), such that

IX(EXQ)"IxExF
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commutes, which is easy to see since d,, 4 preserves all 3 by identities or isomorphisms.

To verify the validity of this description, i.e. that m(LTE)A) is the smallest subobject through which p,, 4 omg”)

can factor, we can take the description of an image in the internal logic
m(f: A— B)={b: B|Ja: A. f(a) =0},

and attempt to prove the equivalence of subobjects

I—Im(pnAom ) £ (A).

—(n)

It is at this point that we have to prowde a concrete and non-recursive definitions of m; * and

AccRunfﬁl). One option is to take AccRunA = (Q x L xQ)", such that Wl(wl(AccRun;))) is initial

and ﬂg(wm(AccRun;))) is final, while

7T3(7TZ'(ACCRUHXL)>) = 7r1(7ri+1(AccRunff))) Vi<i<mn

and have mf;") be the destructing map that requires the first state to be in I and the final state in F', and

dy,. 4 is a simple injection.

3MacLane and Moerdijk, . p. 198.



Note: Due to the communing property of p;, 4, we can equivalently consider Im(p;, 4 © dn,a omf;")). We
—(n) —(n)

can express £ :=p), 4 0dn a 0Ty = my (since dn,a oTig" ought to equal idgxsxq) in the internal
logic as
Ur)={wlw=m3(r)},

using which we can define the language as

{w|Irl(r)=w}= {w: xn

Jr: AccRunE:) CRx2ZxQ)".7m5(r) :w} P (E").

Equivalence of subobjects With the above we can investigate if the internal descriptions, for n > 0:

- Im(r}) = £(A)
w: X"+ w e Im(rh) <= we £M(A)
w: X" we{w|Ia.mga)=w} < we{w‘ﬂrw—@( )/\Accp(n)( )}
w: X" F Eia:AccRunA) i (a) =w <= Ir: (Qx T xQ)".w=ny(r )/\Accp;)(r)

w:Y"F Jr: (QxTxQ)".ay(r )*w/\Accp(")(r) = JAr: (Qx I xQ)".w=ry(r )/\Accp(")(r)

where the last inference is valid, since AccpA")

is an accepted run.
This fact remains open to proof:

is the characteristic morphism that recognisesifar: (Q x X x Q)"

- AccRun{l = {7“: Q@xExQ)" ™ () }
- {a|dnam{P(@) = @ual@) } = {r @x2x Q)" | Ao (1) }
The following step intend to address the informality, in that the right-hand side is of the type /—\ccRunE4 , while
the left-hand side has the super-type (Q x X x Q)". We do this by “up-casting”:
F{r[3aa=rAduam(@) = m{P@na@) } = {r: @x T x Q)" | Accp(r) }
r(@xTxQ)"k Ja.a =71 Adp (@S (@) = m§" (@ a(a)) <= It.r € mE(") Ndn alt)
Descending back into irrigorousness, we can disregard the morphisms that serve as injections from subobjects,
r(QxIxQ)"F Ja.a=r /\dn,A(mgn)(a)) =a < Ft.r € Ndy alt)
r(QxIxQ)"+ Jda: AccRunE:).r = dn,A(mg")(a)) < Ft.r€"Ndy alt)
Using the property that in a pullback Pb(a,b), for any a: A C, b: B> C and a fixed 3: B (see below),
v: C,B: BF3m: Pb(a,b).a(b(r)) =7 <= Ja: A.y € ala) Nb(B), ()
we can conclude the proof with
r: (Q@xXxQ)"+ Ja: AccRun(:).r =a < 3Ja: AccRunff).r = dn,A(mgn)

r:(Q@xLxQ)"F Ja.r=a < Ja.r=a [ ]

Proof of the remaining assumption It remains to argue that (f) is a valid claim. The intuition is
pullbacks in & correspond to intersections in the internal logic of &.

v:C,B: BF Jm: Pb(a,b).a(b(n)) =v <= Ja: A.y € a(a) Nb(B)
We begin by unfolding the definition of “N",

v:C,p: BF JIm: Pb(a,b).a(b(n)) =v <= Ja: Aye{(:C|(€ala) A €bB)}
and of

Pb(a,b) = {w: C | a(b(w)) = b(a(=)) },

we can take a = b(w) for a @(w) = (3. This gives us
v:C,3: BF Jw: C.a(w) =8 = a(b(w)) =~ < v € alb(z)) Ay e bB)



A different approach Take oy...0,: X" |, then

o1...0, € Im(7y)

:»al...ane{al...an

<~ Ja: AccRunXL).al ..o =75 (a)
<~ Ja: AccRun(:).ol cooop =745 (a) (1)

= Ar: (QXEXQ).oy...00 =7H() A ACCpff)(r)

= 0...0, € {01...an dr: (QxZxQ)".al...an:ﬂél(r)/\Accpff)(r)}

—o01...0, € S(n)(A)
where (1) requires

r(@xExQ)"F Accpff) (r) <= 3Ja: AccRunEf). LxsxQyn(a) =1

to hold. Intuitively this should indicate that Accpff) is a faithful predicate, recognising if a r: (Q x X x Q)"

is part of the intersection of legal (m}) and accepting (d,, 4) runs, i.e. in the pullback of the subobjects mj
and d,, 4.
Keeping in mind that for a A, §™ is fixed, this is equivalent to stating that

r (@XExQ)" 3t Ix---xF.r e my(d")Ndp,a(t) < Im: Pb(my,dpa).dpa(n)=0" = r=n

legal acc.

or generally for subobjects a: A~ C, b: B> C and a fixed b: B,
v:C,p: BFJa: Ay eala)Nb(B) <= Im: Pb(a,b).a(r) = = c(m) =7

(Note to self: Does 7 € a(a) Nb(/) even type? | don't think so, since a(a): C, and we cannot intersect on
an element of C!) So the actual definition of Accpg") should be

Accp(f)(r) =3a: I x--- X F.dyala)=r



