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We follow Jacobs, et. al.,’ transliterating the proof from Sets into an arbitrary Topos &, specifically trying
to express the map @ (X) — p (A*) in terms of the internal logic of &.

Review of £ M-Style Non-Deterministic Automata In Sets, we can model a non-deterministic automaton
as the morphism

X —2xp(X)”,

where we can express 2 x o (X)” as the composition of the functor 2 x —= and the (powerset) monad g (—).
An Eilenberg-Moore category EM(T) of a monad (T, 7nx, ux) of a category €, has

1. as objects, morphisms in € of the form a: T'(X) — X, such that aonx =idx and aoT'(a) = aoux
hold,

2. as morphisms between objects z: T(X) — X and y: T(Y) — Y, morphism f: X — Y from &
such that boT(f) = foa.

In other words, we are considering a sub-category of F-Algebra, for a monad T with the above placing
conditions on objects.

For a category ¥, assume the following in order:
= An arbitrary endofunctor G: ¢ — €,
= An arbitrary monad (T: € — €, n, 1),
= an EM-law p : TG = GT,

= and by the corresponding lifting a endofunctor
G: EM(T) — EM(T),

= a final G-coalgebra ( € Hom« (Z,GZ)

= a G-coalgebra poT(¢) € Hom¢ (TZ,GTZ),

» a unique map a: TZ — Z in from poT(¢) to ¢, due to finality of ¢,
Then ¢ may as well be a final coalgebra in EM(T), of the form

am Ga): (TZ — Z) — (TZ — GTZ),

where G(a) = px (G(a)).

For a non-deterministic automaton described by G: X — 2 X p(X)Z, where the final coalgebra
is Z = p(X*) (set of accepted words) is also final for G: p(X) — 2 x p(X)?. For a given state
X we can determine the set of accepted words by composing the monadic unit nx: X — p(X), i.e.
nx(x) ={y|y=x}={z} with G, resulting in the semantic map

[-]: X — %

in the base category, defined by

1Bart Jacobs, Alexandra Silva, and Ana Sokolova. “Trace semantics via determinization”. In: International Workshop on
Coalgebraic Methods in Computer Science. Springer. 2012, pp. 109-129.
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Translation into an arbitrary Topos & We want to generalise [—] from Sets into &. Knowing that in the
internal logic
nx(@) ={yly==xz},

the main issue remains to express t: PX — PX*. To this end, we first have to determine the nature of X*.
Going by Frank, et. al.,> we could intuitively define

= "= DI RSN

but that requires & to be “countably extensive” (supporting countable coproducts), which is not grated in
general, considering that general toposes allow for finite cocompleteness.
Instead, Frank, et. al. define a language as a family of subobjects

L=mP: LM =3

where L(") denotes the words of length n, and L < L’ is defined point-wise.

Here the question arises, of how we can express “PL"7 The notion of a family over N, which is countably
infinite, cannot be articulated in an arbitrary, non-countably extensive topos, as the family of subobjects would
correspond directly to a countable coproduct.

So should we instead consider [—], : X — P (X"), that describes accepted words of length n from a
given state X? This would result in a semantic given by a family of [—],, maps.

Recall that in general PA =21 >— P A correspond® to subobjects m: S = A. In our case, this means we
are trying to find

stB 1P ((E") s m{: L) s 5,

By using a map reminiscent of the usual map from a coalgebra of a non-deterministic automaton to the
terminal coalgebra (indicated by ¢ in the above diagram), we can directly describe the subobject of accepted
words in X" of a state z € X in the internal logic of &

[z],, ={ (o1, 0n) [ (6" (nx () (01, 0n)) }}
which matches the intended type above, where*

0"(8) = (o1,...,00) = 8" Hpx({8(z)(01) [ x € S}))(02, ..., 0n)
for n > 0, and otherwise

§9(8) = S.

As we have a x € X given, we can also describe it using global element x: 1 >— X. By composing this
with [—],,, we have a description of

st =[], oz, read “[z],,".

How does this stand in relation to m;“? Fundamentally, this relies on the above quoted observation

Subg(A4) = Homeg (A4, Q) = Home(1,PA),
®) (&)

2Florian Frank, Stefan Milius, and Henning Urbat. Positive Data Languages. 2023. arXiv: 2304.12947 [cs.FL], p. 10.

3Saunders MacLane and leke Moerdijk. Sheaves in geometry and logic: A first introduction to topos theory. Springer Science
& Business Media, 2012, p. 165.

4Note that in this case £ and § do not have the domain X, but PX, and hence can be defined as ¢ = m; oé(a) and
§ = 12 0G(a), for the coalgebra « representing the automaton, and G lifts from & to EM(P (-)).


https://arxiv.org/abs/2304.12947

which is natural in A, or specifically in our case for n € N
Sube (X") =2 Homeg (X", Q) = Home (1, PX").

The (3) correspondence is just exponential transposition, that is easily seen when one remembers that
PA = Q4. To understand (), one has to recall that Subg(A) is the lattice of subobjects of A. As Subg(A),
like all categories of a poset are thin categories, there is at most one morphism between two objects, where
each morphism is a mono (and epi). While usually we have a unique classification x,, for each mono m, the
fact that Subg(A) is thin grants us that for each X, there is also a unique mono m.

Put simply, [—], oz (or rather its transpose) is the character of m'). We can define the transposed
morphism by

XmgLL) =0p+— 0p € [[.’L‘ﬂn X" —Q,

for some state z € X and &, = (01,...,04).
We can now express a “language” starting in = as a family of monos

— L) .
L, = (m% ) [=], — E")nEN.
Relating L, to £ M-style semantics While conceivable as a intermediate step, the above does not have an

immediately obvious relation to the £ M-style semantics. The issue remains representing >* and specifically
P (X*). It appears necessary to strengthen the assumptions on & beyond an elementary topos.

Topos with countable coproducts Adamek, et. al. discuss automata in a symmetric monoidal closed
category 9 = (2,®,I), where here
9 =8, ® = X, I=1
with a free monoid X® = ¥* and a “language”
L:X® —Y

where Y = Q describes the output. For a functor of the form TQ =Y x QX the terminal coalgebra is® yX®,
which is Q=" in our case.

For this we require & to have countable coproducts, as X® =]
FQ=I1+X®Q.

This provides us with the sufficient structure to define [—]. For a Coalgebra (e,d) : X — Q x X%, we
can intuitively define

2] = {7 | e@@)() }.

X™, which is the initial algebra of

n<w

where d(z) is the canonical extension of d: X — X* over the free monoid.

The definition of a language by Adamek, et. al., would be a morphism in & of the form ¥* — ). We can
represent this internally as Q=" ~ P (X*), which gives us the expected result.

Considering our previous definition, we could also describe it as a single mono (as opposed to a family of
monos)

L [z] — X"

This is not surprising, as MacLane points out that® a power object (or the generalised element of a power
object) 1 = P (A) corresponds directly to a mono S = A.

Recall that L, is a family of monos. How does this relate to L!? Granting the existence of L, and
transitively that of countable coproducts, we want to know if

(La)n = {5 € Ob(LL) | |17 =n}

for every n € N. Note as a matter of formal pedantry, that the first usage of n occurs in the meta-language,
where we are indexing a family of monos, while in the second instance, n is an object in &, that of the same
type as ||o1...04,]/, a map from a free monoid oy ..., to “n”.

5Jiri Adamek, Stefan Milius, and Henning Urbat. Syntactic Monoids in a Category. 2015. arXiv: 1504.02694, p. 7.
SMacLane and Moerdijk, , p. 165.
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Topos with a natural number object If we decide that the existence of countable coproducts is too
restrictive, we can consider an alternative approach, that would require & to express the notion of “countably”,
without requiring concrete countable coproducts. (The topos Eff” is an example of a category with a NNO,
but not arbitrarily cocomplete, specifically without countable coproductslcitation needed])

A natural number object is® an object N € Ob(&’) with morphisms o, s as indicated here

123N =23 N
\if | f
X 25 X

where for any other object X € Ob(&) and analogous morphisms pair x, u, there is unique f: N — X and
N is unique up to isomorphism. This should also be equivalent to the F-Algebraof the functor FX =1+ X,
where the structure morphism of the initial algebra is exactly {(0,s) : N — 1+ N.

In Sets, N = N with o(-) = 0 and s(n) = n + 1 is a NNO.? Every NNO is also a model of Peano
arithmetic, 10

n=0V3Im.m=s(n)

=(s(n) = 0)
s(n)=s(m) = n=m
(0e PAVn.(ne P) = s(n)e P) = P=N

for n,m € Ob(N) and P € Ob(QY).

In the internal logic, we can reason with a NNO N, just likelcitation needed]yithy N in Sets.

Idea: We can represent a “¥*" using an object (1 4 (1 4+ Z))NXN. To give intuition, assume a category
% has countable coproducts, allowing the direct definition of ¥*, for oy ...0, € ¥*:

11(%) if n#£m
flor...om)=(n,i) = { 2(ti(x) fi>m
LQ(LQ(O'Z')) else
Note that this allows us to map every ¥* to this kind of an exponential object, but the reverse is not the
case: The maps
(n,i) = 12(22(0))
or

(n Z)H{Ll(*) ifi>0

ta(t2(c)) else

for some fixed o do not unambiguously correspond to a ¥*.
The transpose of £: ©* — (1+ (1+ )V N is £: 5* x N — (1 + (1 4+ ).
An imaginable further variation is the following

t1(%) ifn#m
Un,oy...0m) = L2<Z_H{L1(*) if1§i§m> e

to(o;) else

of the type : N x ©* — 1+ (1 + %)V,

We would like to demonstrate f = (1+(1+X this can serve as the carrier for the terminal
coalgebra, which should also grant us that if & had to countable coproducts, that the following would
commute:

))N><N

7J.M.E. Hyland. “The Effective Topos”. In: The L. E. J. Brouwer Centenary Symposium. Ed. by A.S. Troelstra and D. van
Dalen. Vol. 110. Studies in Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 165-216. DOI: https://doi.org/10.
1016/S0049-237X(09)70129-6. URL: https://www.sciencedirect.com/science/article/pii/S0049237X09701296.

8Peter T Johnstone. Topos theory. Courier Corporation, 2014, p. 165.

9Francis Borceux. Handbook of Categorical Algebra: Volume 3, Sheaf Theory. Vol. 3. Cambridge university press, 1994, p.
455.

10 . p. 457, p. 456.
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To prove that F is a carrier for the terminal coalgebara, we need a unique coalgebra homomorphism
f: X —PF:

Qg4
f lidgxfz

pr— Y L qip()®

|

1

|

|
~

We can consider the two components separately:
gof=a:Q— (termination)
Sof=tof*:Q—9Q (transition)

For (termination), we need to ensure that if the current state is accepting (a: @ — 2), then the “empty
word" is also accepted:

f € PFVnYi. f(n,i) = (%)
For (transition), we need to ensure that the addition of a ¢ € Ob(X) properly extends the accepted words:

Vo eX

The preceding investigation was suddenly interrupted and possibly deferred to a later point in
time . ..

Suitability of [—] Assuming & is countably extensive, we have the following situation,

-]

///////——\jf\\\P@ﬂ
o Jaen s

. =
Qx P (X)) 92X L g xp(xn)”

where for a given coalgebra (0,t) : X — Q x X*, we define
[o] = { 7 € 2 | olt(@)(@)) }

nx(z) ={yly=z},
(%) = {EEE* Hmef{.o(@(ﬁ))},

h

e(Ly=€e€L
(L)y=0c—{deX |o-5eL}
m1(det (0,t)) ==X — Jz € X. 0o(2)

ma(det (0,1)) = X — (o — U t(a:)(a))

reX

where the last four definitions follow Silva, et. al.!! in spirit. To verify, that our definition of [—] is sensible,
we analyse the two commuting polygons in the internal logic:

x: X F{o,t) = det {(o,t) onx

11 Alexandra Silva et al. “Generalizing determinization from automata to coalgebras”. In: Logical Methods in Computer Science
9 (2013), p. 5.



and
X:PX,0: 2 F (g,8) oh =idy x h¥ odet (0,1),
where we can split the latter equation into two
X:PXFeoh < m(det(o,1)),
and

X:PX,0: L F doh =h¥om(det (0,1)).

Singleton Determinisation Verify,
F {(o,t) = det (o, t) onx
x: X F{o,t) (x) = det (o, t)(nx(x))

x: X F{o,t) (x) = <% —3Jdo e Xoo(x),X — (0 — U t(:r)(a)) >(17X(:E))

zeX

x:XF(o,t>(:v)<E|:L'ET/X(;L').0(:L'), (JH U t(x)(a))>

zENx (x)

: X F{o,t) () = (o(z), (0 = t(z)(0)))
: X FA{o,t) (z) = {o(x),t(x))
: X F{o,t) (x) = {o,t) (x)

F {(o,t) = (o, t)

Termination of the Terminal Coalgebra Verify,

Feoh <= m(det (o,1))
X:PXFe(h(X) — (X —3z € X.02))(X)
x;PXHe{E(axex.o(@(&))} — Jze X o(x)

X:PXFIzeXolt(r)(e) <— Tz eX.o(x)
X:PXFIzxeXolr) < JzeX o)

Transitions of the Terminal Coalgebra Verify with context X: PX o: %,

- doh = h¥omy(det (o, 1))
= 6(h(X)) = h*(ma(det (0,1))(X))

Fo(h(X)) = h* (0 - U t(y)(a))

yex

F8(h(X)) =0 h (U t(:u)(o*))

yeX
M—H{aez*‘a-&e{a‘axex.o(@(a)}}:...

FJH{EEE* EIxEX-O(@(J'&))}

:a|—>{5€ >* |3z e (U t(y)(a)).o(t(x)(&’))
F{&)Hmé%.o(@(o-&))}z{&




where we can legitimate the inference step

Jze | |Jtw)(o) ] ot(2)(@) < T e X o(t(x)(o-5))

yex

will be legitimated below.

Verification of [—] As a final step, we have to ensure that for a 2: X the following holds:
z: X F [o] = hnx («))
z: X b {a e o | o(t(2) (7)) } - {5 e o ‘ Iz € nx (2). o(t(@)(5)) }
o(t(@)(@) } = {7 e 3" | o(t(@)(@)) } m

This gives us a satisfactory conclusion regarding the suitability of [—] in terms of the internal logic of & to
express the semantics of a non-deterministic automaton described by (o, t).

x:Xl—{EeE*

The canonical extension of f on a (free) monoid X* As a final point of clarification, it is necessary to
consider the definition and properties of

— {z} if ¢ =
t(x)(d) = {Ux/a(x)(o) M(El) if 3 &

forat: X — PX®, z: X and &: 2%, Keep in mind that this is not a definition. We instead have to
demonstrate that a morphism exists with properties like these when considered point-wise.

Note that X* is the initial aI%?bra of the functor FX =1+ X x X, meaning we have a have a unique
morphism h(n,c): ¥* — P (X)", for which

[nil;cons]

1+32xX* ¥*
lid1+idg><h(n,c) ih(n,c)
1+rexPx)¥ " px)X

commutes. In this context, we want h(n,c) to denotes the function generated by a word &, such that
h(n,c)(d) = x — t(x)(7),

holds for an arbitrary 7.
We have to define a

n:1—P (X)X7
S x P (X)) —P(X)*
and the dependent
h(n,c): * — P (X)X
to demonstrate that the above diagram commutes. We can split this up into two equations:
noid; = honil (1)
co(idsg X h) = hocons (2)
and assume the definitions:
n(x) =x— {z} =n,
(o, f)=x~ |J f@)

z'et(z)(o)

n if ¢ =
h(n,c)(d) = { ) if 5 _,

c(o, h(n,c)(c”’ i

Note the implicit usage of the transition morphism ¢ in the definition of c.



Commutativity using h(n,c) First consider the equation involving nil,
F n = h(n, c)onil
[ n(x) = h(n, ¢)(nil(x))
F n=n |
and for the “cons"-path:

H co(ids x h(n,c)) = h(n,c)ocons

c:%,6: 5"+ co(ids X h(n,c))(o,d) = h(n,c)ocons(o, &)

0:%,0: X" F ¢(o, h(n,c)(&)) = h(n,c)(cons(o, 5))

0:%,0: X" F c(o,h(n,c)(d)) = ¢(o, h(n,c)(F)) [ |

Definition of ¢ in relation to h(n,c)
, so the question remains if this satisfies the conditions we expect.

transposition of h(n,c): ©* — P (X)~

It is clear that t(—): X x ¥* — PX is the exponential

Therefore, we will consider the two “constructors” of a ¥* inductively. An empty-word, i.e. the base-case,

F h(n,c)(nil) = x + t(nil)(z) = t(e)(x)
- n=uxw— {z}
F nx =x u

and for a non-empty word, with the induction hypothesis h(n,¢)(&) = z — t(z)(5),

0:%,0: " F h(n,c)(cons(o, &)) = (z — t(cons(o, d))(x))) = (x — t(o - &)(x))

c:%,0: 3"k clo,h(n,c)(@)) =z — U t(x") () (apply I.H.)
z'€t(x)(o)

o:%,5: Y+ T U h(n,c)(@) (@) | = |z +— U h(n,c)(3)(x") [ ]

z'et(x) (o) z'€t(x)(o)

Verifying the intended usage As a reminder, the intention was to ensure that equivalences like

)

X:PX,0:%,6: 5 F3ze | [t ] .o (@(a)) — JreX.o (@(U .5)
yeXx
or more concretely/simply
z: X,0: %,5: X" 32’ € t(z)(0).0 (M(&')) < o (@(0 : 5)) .

In fact, we might regard the former as a special case of the latter, where the X are the states following a
transition from a x over some &: 3:

v X,0:86: 8,52 e | o) .o (t(x’)(&)) — 32’ € t(2)(3).0 (t(x’)(a-&'))
yEt(x)(5)
z: X,0:8,65:%,0: X" F Jz' € t(z)(6-0).0 (t(ar’)(&')) < 3z’ et(z)(5).0 (t(a?’)(o . 5'))

(We can legitimate this claim in general, by extending the automaton by a fresh & that maps = to X, and that
wouldn't affect any transitions beyond that.)
So restricting our attention to the latter formula,

v X,0:%,6: 5" 34 € t(x)(a).o(M(a)) = o(t(x)(g-g)

)

(2")(7)

2: X,0:%,5: 5* EIx'Et(x)(a).o(W(&’)) — o0

z'€t(z) (o)



Reminding ourselves that o is a “I-style” check, and that for an arbitrary non-deterministic state X
o(X) <= FJz; € X.0({z:})
holds. Therefore,

2 X,0: 5,5 F ax'et(x)(a).o(W(a)) = 3ze |J H@)@).0({z})
@' €t(z) (o)



