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We know that p : TF = TF, where the monad TX = p(X) and an
endofunctor FX = 2 X o (X) map a set of deterministic automata into
a single non-deterministic automaton N, where N accepts a word if any
deterministic automaton would accept it and state transitions merge all
deterministic transitions.

The above occurs in Set. Can we translate this into a topos, where
TX =PX

FX=QxX*
To this end, we have to define the “power object functor” P—, the “exponen-
tial functor” —4 and the “product functor” — x A for some A € Ob(&) (the
latter two, which are given in Cartesian closed category (terminal, product,
exponential), are known to be adjunct).

Definition of a Topos For a category &, we speak of a power object
A € Ob(&) as an object PA = Q4 € Ob(&) along with a morphism
€4 »— A x PA, when for every C € Ob(&) and mono R — A x C
the following commutes (composing diagrams by McLarty,' Johnstone? >

Caramello® and from nLab®):

R €A 1

Ax C A PA T QA 4 24,

with a unique xr : C — P A and R being the pullback.
If & with all finite limits has power objects for all objects Ob(&’), then we call
& a (elementary) topos.® The qualifier “elementary” distinguishes the notion
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from Grothendieck topos, which are a special instance of elementary toposes.’

From the above, we can derive arbitrary finite co limits® and exponential ob-
jects B4 % suchthatforall g : Zx A — B, thereisaunique f : Z — B4 in

Z x A

Fxida 9

The subobject classifier,

commutes, follows from Q = Q! = P1.

There are multiple equivalent definitions,'© for example MacLane!'! postu-
late all pullbacks and a terminal objects (which amount’s to & being complete),
the subobject classifier 2 and then describes power objects P A along with
a morphism € 4: A x PA — €, such that for every f : A x B — ( there
is a unique arrow g : B — P A and

BXA4f>Q

igXidA H
PAxA —S4 0

where the morphism € 4= ev 4 g is not to be confused with the object € 4
given above. Taken as a contravariant functor, P— : & — & maps an
object in & to its respective power object. A morphism h : A — B is raised
to Ph: PB — PA, so that
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commutes.

Examplein Set The powerobjectof anyset Aisp (A) .= {B | B C A},
exponential objects B4 are set of functions of type A — B and the sub-
object classifier is P1 = p ({*}) = {{*},{}} = 2= {T, L} and ¢ is the
characteristic function indicating if a an element of a (super-)set .S is part
of a subset B. We can interpret McLarty's €4 as the subset

€a={(@,X)]ac X} CAxQ"

where “€" is the usual set-theoretical membership relation.

Constituent Functors We will be using the covariant Power-Object Func-
tor, as this is necessary for the Coalgebra to be defined on an Endofunctor. As
expected, the “binary product functor — x A with a fixed object A € Ob(&’)"
maps B € Ob(&) to A x B € Ob(&), and maps a morphism m : B — C'to
amorphism f x A: B x A— C x A. The “exponential functor —* with a
fixed domain A € Ob(&’)" maps a B € Ob(&’) and a morphism f : B— C
to f4: BA — C* so that

BAx A5 B

o xidAl lf

cAxAZES o

commutes.

Defining p in & Recall that in Set, Jacobs, et. al. define!? px =
px1 X pxs e (2% X¥) — 2% p(X)” component-wise,
mnU)=1 << JheX.(1,h)eU
and
x=pa(U)(a) < 3(b,h) € U.h(a) ==.
This now becomes px : P(2 x X¥) — Q x PX ™.
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Here the question arises, what a power-object of a sub-object classifier
might be? Likewise, how does the power-object behave over products and
exponential objects? Back in Set, we could make use of properties like

PI+ExX)22x p(Ex X)22x p(X)”,
as
gIHEXX v 9 5 9TxX v 9 9X T

Reminding ourselves that PA2=2Q4, we can make use of properties enjoyed

by exponential objects,*® such as transposition (currying)
Home (A, CP) = Home (B x A, C).

As a Product UMP It is clear, that Q x PX™ has two projections
T OxPXT—50 m:OxPXE——PX®
that constitute a universal cone. If we can provide two further morphisms
p1:P(QxX%) —Q  p:P(QxX¥) —PX”
then the universal property of products gives us a unique morphism, which
we shall already conveniently refer to as
px P (2x X¥) »QxPX”.
Here's an idea: The cone-morphisms p; and po will respectively be defined
as
p1:P(QxX%) —-PQ—Q  pp:P(QxX¥) —-PX* —PX”
Subobject of a Power-Object-Product These are simply
Prm :P(Ax B) — PA,
and
Pry: P(Ax B) — PB,
as P— is covariant.
Elaborating p; and po Given Py and P, the constructing the cone
from P (Q X XZ) requires two further morphisms, of the forms

PQ—Q and P (X¥) —PX”
The the former, consider the subobject,

(X|3z e X.2} —— 1

Is I

PO — .0

13Steve Awodey. Category Theory. Oxford, England: Oxford University Press, 2006,
p. 119.



For the latter, consider
P (X*) — (PX)”:g

~ X7, (0%)”
~ QXZ L, O5xX
Y x X x 0¥ —Q (curry)

2N x X xP(X¥) —Q:g
We can regard the last form as a characteristic morphism of the subobject
“containing”, taking the liberty of thinking in Set,

Allz € X, 0 € ¥ and F € P (X¥) (that is tosay F C X*)
where there exists a f € F, such that f(o) = x.

or put in terms of the internal logic of &,

{((z,0,F) | 3f € F.f(0) =2} — > 1

Ig/ Itrue

X x ¥ x QX7 X!

It would be worthwhile to translate these internal formulations back into
morphisms of &
These results gives us
p1=xsoPm :P(QXXE) —Q
and
p2=goPm:P(Qx X¥) — PX”.
Due to the uniqueness of px, we can conclude that the above construction
gives us a concrete definition:
px = (xg % g)o (Pmy,Pmy).
Overview and Review of the Construction The following commutative
diagram summarises the construction

V P (Qx X*) \P”z
PQ  ~ px\P (x%)
| 1 l

Qe QxPX" — 5 PX”



Before proceeding to check if this satisfies the conditions of the EM-
distributive law, | would like to verify if the arrows make sense in terms of
toposes as generalised sets:
= The projection p1, itself a characteristic morphism of the subobject that

“contains” at least one accepting automaton.
= Going by MacLane,'* we know that subobjects

m:S»— A

may also be described as

s:1—PA.

The subobject corresponding to P (X*) denotes state-transitions, that

collectively step to a sub-object P X via some o € 3, which we precisely

describe using PX ™.
This intuitively matches the above mentioned description by Jacobs, et. al..

Verifying the Distributivity Laws Recall that FX = Q x X*. It remains
to verify if a “singleton” power-object distributes to a non-deterministic
automaton over a single state,

Qx X*

T \F(nx)

P (Qx X¥) Px QxPX*®

and if “flattening” power-objects of automata and of states distribute well
as well,

P (P (0 x x¥)) —20 P (Qx PXY) —X 0 x PPX™

J{,U‘FX J{F(P«X)

P (2 x X¥) X QxPX”

The Power-Object-Functor is a Monad First we have to define our
terms, and make the unit 17 and multiplication p of the monad explicit.
Following a comment by Zhen Lin on Stack Exchange'®, we can define
7 as the characteristic morphism of the transpose of the diagonal
xXa: X xX—Q
as
nx : X — Q¥ 2 PX,
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or in using internal logic
nx(e) ={z |e==z}.
Now, whenever we encounter the a - a € nx(e), we know this to be
equivalentto - a = e.
Zhen gives the definition of multiplication directly using internal logic
pux(t)={z|3s: PX.z € sAs et}
Let us use the opportunity the rephrase p; and ps directly and point-wise
in terms of the internal logic of & and a fixed state space X € Ob(&):
p1(A:P(Qx X>)) =3(c,8) € A.e
and
p2 (A:P(Qx X¥)) =0 {z:PX |3(c,6) € A.0(0) = z}
so together
px(A)=(3(,d) € Ac,o—~ {z:PX |3(g,0) € A.§(0) = z})

Distributitivty of the Unit Intheinternal logic, the first diagram reads as

F pxonrx = F(nx)

a = px(nrx(a)) = F(nx)(a)
at which point we can split the equation into the two cases

ol pr(npx (@) = ida(m(a)  (left)

a = pa(nex(a)) = (nx)"(m2(a)) (right)
considering the simpler (left) case first,

al= (e, d) € npx(a).e = m(a)

o 3 elyly=aire=m(a)

al= (g, 0) . (e,9) =aNne=mi(a)

given that a is a Q x X*, we can replace
g0 (3, 8).(€,0)=(e,0) ne') =m1((g,9))

e = e=¢
and then the right case, by extending both sides with a 0 € %,
a,0 |= p2(nrx(a))(o) = (1x)" (ma(a))(0)
a,0,z |= 2 € p2(nrx(a)(0) <= z € ((nx)"(m2(a)))(0)



considering the left hand side of the implication, we get
(€.0) e{yly=a}ni(o) =2

(,0) =aNnd(o)==z2

(ma(a))(0) = 2,

while the right hand side gives us
z € ((9 = nx o g)(m2(a)))(0)

or

or

or
z € (nx oma(a))(o)
or
z € nx ((m2(a))(0))
ze{y |y = (m2(a))(0)}
or

z = (my(a))(0),

giving us the final and positive result

a,0,z = (m2(a))(0) = 2 <= z = (m2(a))(0)
al= a=a
Distributitivty of Multiplication We consider,
= pxoprx = F(ux)oppx oP (px)
AE px(prx(A)) = F(ux)(ppx (P (px) (4)))
Once again, considering both cases separately:
A= p1(prx (A)) = m(F(ux)(ppx (P (px) (4))))
A= p1(prx(A)) = m(ppx (P (px) (4)))
AE p1(prx(A)) = p1(P (px) (A))

AE  3(gd) epurx(A).e < (0 € P(px)(4).c



Here again, we consider the right and the left hand of the implication sep-
arately: On the left we can expand prx(A),
I(e,0).(e,0) € {z |Fs.s € ANz € s} Ne
or equivalently,
I(e,0).(Is.s € AN (e, d) € s) Ne.
On the other side, we can expand P (px)
3(e,0) € P (px) (A).€
which goingby x € P(f)(s) < Jy.yesA fly) ==z, is
3(e,0).(e,0) € {z | Jy.y € AN px(y) =z} Ae,
or
I(e,0).(Is.s € AN px(s) =(g,0)) Ne
or
I(e,0).(Is.s € AN pi(s) = Apas) =0) Ae,
where we can disregard 4, as it doesn't interest us beyond its existence,
(e, 8).(Fs.s € AN (F(,8') €s.&') =¢) A,
which simplifies to
I{e,8).(Is.s € AN (g, d) € s) N¢,
as ¢’ was not constrained. This gives us the intended equality result for p;.

For the second case, we once again fix an arbitrary o:

Ao pa(prx(A)) (o) = m(F(ux)(ppx (P (px) (4))))(0)

Ao p2(prx(A)) (o) = (ux™(m2(ppx (P (px) (A)))))(0)
Ao = p2(prx(A))(0) = px(m2((ppx (P (px) (A))))(0))
Ao,x = x € pa(prx(A))(o) <= z € pux(m((ppx (P (px) (4))))(0))

Simplispanding the LHS of the implication we get
z € p2(prx(A))(o)
<z €{y|3(e0) € prx(A4).0(c) =y}
< ze{y|Id)ef{z]|Is.s€e ANz € s}.0(0) =y}
< ze{y|Id).(Is.s € AN (g, 0) € 5).5(0) =y}
<= 3(,0).(3s.s € AN (g, 0) € 5).0(0) =x
The the RHS, consider
z € px (m2((ppx (P (px) (4))))(0))
=z ef{y|Is.s € mppx(P(px)(4)))(0) Ay € s}
=z ef{y|Is.s € (pAP(px)(A))(0) Ny € s}
< ze{y|3s.se{z]3(,d) eP(px) (A
>z €{y[3s. (3(e,0) € P(px)(A).0(0) = s) Ay € s}
where P (px) (4) = {w|3s.v € ANw = px(v)},
— ze{y|3Is.(3(,d). Fv.ve AN (e, d) = px(v)) Ad(o) =

)-0(0) =z} Ay € s}

s)Ay € s}



allowing us once again to ignore ¢,
— ze{y|Is.(3(,d). Fv.ve AN = p2(v)).0(0) =8) ANy € s}
= 35.(3(e,0) . (Fv.ve ANI=p2(V))ANd(o) =s) ANz €S
< Js.(3(,0) . v.ve AN pa(v)(o) =8) ANz € s
< J(e,0).Fv.v e ANz € pa(v)(0)
< J(g,0).v.v € ANz € pa(v)(0)

keeping in mind that p2(v) = (0 — {z | 3(¢,0) € v A d(0) = z}),
< 3(g,0). ve ANz e{z|I(d) €vAd(o) =2z}
< 3(,8). v.ve ANT(,§)evnd(o)=a
<= 3ds.s€ ANT(g,0) esNd(o) =1

This leaves us with the question,

3(e,0).(As € A. (e,8) € 5).0(0) = <= Is€ A.3(e,8) € 5.5(0) =
which holds by the commutativity of 3 given that (g, §) is “free” in A.

This concludes the proof, demonstrating that the £ M-distributive law for
holds in & for px. ]
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