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We know that ρ : TF ⇒ TF , where the monad TX = ℘ (X) and an
endofunctor FX = 2 × ℘ (X) map a set of deterministic automata into
a single non-deterministic automaton N , where N accepts a word if any
deterministic automaton would accept it and state transitions merge all
deterministic transitions.

The above occurs in Set. Can we translate this into a topos, where
TX = PX

FX = Ω × XΣ

To this end, we have to define the “power object functor” P−, the “exponen-
tial functor” −A and the “product functor” − × A for some A ∈ Ob(E ) (the
latter two, which are given in Cartesian closed category (terminal, product,
exponential), are known to be adjunct).
Definition of a Topos For a category E , we speak of a power object
A ∈ Ob(E ) as an object PA = ΩA ∈ Ob(E ) along with a morphism
∈A A × PA, when for every C ∈ Ob(E ) and mono R A × C
the following commutes (composing diagrams by McLarty,1 Johnstone2,3
Caramello4 and from nLab5):

R ∈A 1

A × C A × PA ΩA × A Ω

r

⌟
true

idA×χR π2×π1 evA

with a unique χR : C PA and R being the pullback.
If E with all finite limits has power objects for all objects Ob(E ), then we call

E a (elementary) topos.6 The qualifier “elementary” distinguishes the notion
1Colin McLarty. Elementary categories, elementary toposes. Clarendon Press, 1992,

p. 120.
2Peter T Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford

University Press, 2002, p. 86.
3Peter T Johnstone. Topos theory. Courier Corporation, 2014, p. 43.
4Olivia Caramello and Riccardo Zanfa. On the dependent product in toposes. 2019.

arXiv: 1908.08488 [math.CT]. url: https://arxiv.org/abs/1908.08488, p. 5.
5nLab authors. power object. https://ncatlab.org/nlab/show/power+object.

Revision 8. May 2024.
6Michael Barr and Charles Wells. Toposes, triples, and theories. Springer-Verlag,

2000, p. 63.
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from Grothendieck topos, which are a special instance of elementary toposes.7
From the above, we can derive arbitrary finite co limits8 and exponential ob-

jects BA,9 such that for all g : Z×A B, there is a unique f : Z BA in

Z × A

BA × A B

gf×idA

evA,B

The subobject classifier,

S 1

B Ω

m

!

⌟
true

φ

commutes, follows from Ω = Ω1 = P1.
There are multiple equivalent definitions,10 for example MacLane11 postu-

late all pullbacks and a terminal objects (which amount’s to E being complete),
the subobject classifier Ω and then describes power objects PA along with
a morphism ∈A: A × PA Ω, such that for every f : A × B Ω there
is a unique arrow g : B PA and

B × A Ω

PA × A Ω

g×idA

f

∈A

where the morphism ∈A= evA,Ω is not to be confused with the object ∈A

given above. Taken as a contravariant functor, P− : E E maps an
object in E to its respective power object. A morphism h : A B is raised
to Ph : PB PA, so that

7Johnstone, Topos theory , p. 24.
8Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first

introduction to topos theory. Springer Science & Business Media, 2012, p. 180.
9Ibid., p. 167.

10Johnstone, Sketches of an Elephant: A Topos Theory Compendium, p. vii.
11MacLane and Moerdijk, Sheaves in geometry and logic: A first introduction to topos

theory , p. 163.
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B × PB

A × PB Ω

A × PA

∈B
h×idPB

idA×Ph ∈A

commutes.
Example in Set The power object of any set A is ℘ (A) := {B | B ⊆ A},

exponential objects BA are set of functions of type A B and the sub-
object classifier is P1 = ℘ ({∗}) = {{∗}, {}} ∼= 2 ∼= {⊤, ⊥} and φ is the
characteristic function indicating if a an element of a (super-)set S is part
of a subset B. We can interpret McLarty’s ∈A as the subset

∈A := {⟨a, X⟩ | a ∈ X} ⊆ A × ΩA

where “∈” is the usual set-theoretical membership relation.
Constituent Functors We will be using the covariant Power-Object Func-
tor, as this is necessary for the Coalgebra to be defined on an Endofunctor. As
expected, the “binary product functor − × A with a fixed object A ∈ Ob(E )”
maps B ∈ Ob(E ) to A×B ∈ Ob(E ), and maps a morphism m : B C to
a morphism f × A : B × A C × A. The “exponential functor −A with a
fixed domain A ∈ Ob(E )” maps a B ∈ Ob(E ) and a morphism f : B C
to fA : BA CA so that

BA × A B

CA × A C

evA,B

fA×idA f

evA,C

commutes.
Defining ρ in E Recall that in Set, Jacobs, et. al. define12 ρX =
ρX 1 × ρX 2 : ℘

(
2 × XΣ)

2 × ℘ (X)Σ component-wise,
ρ1(U) = 1 ⇐⇒ ∃h ∈ X. ⟨1, h⟩ ∈ U

and
x = ρ2(U)(a) ⇐⇒ ∃⟨b, h⟩ ∈ U. h(a) = x.

This now becomes ϱX : P(Ω × XΣ) Ω × PXΣ.
12Bart Jacobs, Alexandra Silva, and Ana Sokolova. “Trace semantics via determiniza-

tion”. In: International Workshop on Coalgebraic Methods in Computer Science. Springer.
2012, pp. 109–129, p. 117.
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Here the question arises, what a power-object of a sub-object classifier
might be? Likewise, how does the power-object behave over products and
exponential objects? Back in Set, we could make use of properties like

℘ (1 + Σ × X) ∼= 2 × ℘ (Σ × X) ∼= 2 × ℘ (X)Σ
,

as
21+Σ×X ∼= 2 × 2Σ×X ∼= 2 × 2X Σ

.
Reminding ourselves that PA∼=ΩA, we can make use of properties enjoyed

by exponential objects,13 such as transposition (currying)
HomC (A, CB) ∼= HomC (B × A, C).

As a Product UMP It is clear, that Ω × PXΣ has two projections
π1 : Ω × PXΣ Ω π2 : Ω × PXΣ PXΣ

that constitute a universal cone. If we can provide two further morphisms
ρ1 : P

(
Ω × XΣ)

Ω ρ2 : P
(
Ω × XΣ)

PXΣ

then the universal property of products gives us a unique morphism, which
we shall already conveniently refer to as

ρX : P
(
Ω × XΣ)

Ω × PXΣ.
Here’s an idea: The cone-morphisms ρ1 and ρ2 will respectively be defined

as
ρ1 : P

(
Ω × XΣ)

PΩ Ω ρ2 : P
(
Ω × XΣ)

PXΣ PXΣ.

Subobject of a Power-Object-Product These are simply
Pπ1 : P (A × B) PA,

and
Pπ2 : P (A × B) PB,

as P− is covariant.
Elaborating ρ1 and ρ2 Given Pπ1 and Pπ2, the constructing the cone

from P
(
Ω × XΣ)

requires two further morphisms, of the forms
PΩ Ω and P

(
XΣ)

PXΣ.
The the former, consider the subobject,

{X|∃x ∈ X. x} 1

PΩ Ω

f true
χf

13Steve Awodey. Category Theory. Oxford, England: Oxford University Press, 2006,
p. 119.
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For the latter, consider
P

(
XΣ)

(PX)Σ : g

∼= ΩXΣ
(ΩX)Σ

∼= ΩXΣ
ΩΣ×X

∼= Σ × X × ΩXΣ
Ω (curry)

∼= Σ × X × P
(
XΣ)

Ω : g′

We can regard the last form as a characteristic morphism of the subobject
“containing”, taking the liberty of thinking in Set,

All x ∈ X, σ ∈ Σ and F ∈ P
(
XΣ)

(that is to say F ⊆ XΣ)
where there exists a f ∈ F , such that f(σ) = x.

or put in terms of the internal logic of E ,

{(x, σ, F ) | ∃f ∈ F. f(σ) = x} 1

X × Σ × ΩXΣ Ω

g′ true

χg′

It would be worthwhile to translate these internal formulations back into
morphisms of E .

These results gives us
ρ1 = χf ◦ Pπ1 : P

(
Ω × XΣ)

Ω
and

ρ2 = g ◦ Pπ2 : P
(
Ω × XΣ)

PXΣ.
Due to the uniqueness of ρX , we can conclude that the above construction

gives us a concrete definition:
ρX = (χf × g) ◦ ⟨Pπ1, Pπ2⟩ .

Overview and Review of the Construction The following commutative
diagram summarises the construction

P
(
Ω × XΣ)

PΩ P
(
XΣ)

Ω Ω × PXΣ PXΣ

ρX

Pπ2Pπ1

ρ2ρ1

χf g

π1 π2
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Before proceeding to check if this satisfies the conditions of the EM-
distributive law, I would like to verify if the arrows make sense in terms of
toposes as generalised sets:
• The projection ρ1, itself a characteristic morphism of the subobject that

“contains” at least one accepting automaton.
• Going by MacLane,14 we know that subobjects

m : S A
may also be described as

s : 1 PA.
The subobject corresponding to P

(
XΣ)

denotes state-transitions, that
collectively step to a sub-object PX via some σ ∈ Σ, which we precisely
describe using PXΣ.

This intuitively matches the above mentioned description by Jacobs, et. al..
Verifying the Distributivity Laws Recall that FX = Ω × XΣ. It remains
to verify if a “singleton” power-object distributes to a non-deterministic
automaton over a single state,

Ω × XΣ

P
(
Ω × XΣ)

Ω × PXΣ

ηF X F (ηX )

ρX

and if “flattening” power-objects of automata and of states distribute well
as well,

P
(
P

(
Ω × XΣ))

P
(

Ω × PXΣ
)

Ω × PPXΣ

P
(
Ω × XΣ)

Ω × PXΣ

µF X

P(ρX ) ρPX

F (µX )

ρX

The Power-Object-Functor is a Monad First we have to define our
terms, and make the unit η and multiplication µ of the monad explicit.

Following a comment by Zhen Lin on Stack Exchange15, we can define
η as the characteristic morphism of the transpose of the diagonal

χ∆ : X × X Ω
as

ηX : X ΩX ∼= PX,

14MacLane and Moerdijk, Sheaves in geometry and logic: A first introduction to topos
theory , p. 165.

15https://math.stackexchange.com/a/1192948
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or in using internal logic
ηX(e) = {x | e = x}.

Now, whenever we encounter the a ⊢ a ∈ ηX(e), we know this to be
equivalent to ⊢ a = e.

Zhen gives the definition of multiplication directly using internal logic
µX(t) = {x | ∃s : PX. x ∈ s ∧ s ∈ t}.

Let us use the opportunity the rephrase ρ1 and ρ2 directly and point-wise
in terms of the internal logic of E and a fixed state space X ∈ Ob(E ):

ρ1
(
A : P

(
Ω × XΣ))

= ∃ ⟨ε, δ⟩ ∈ A. ε
and

ρ2
(
A : P

(
Ω × XΣ))

= σ 7→ {x : PX | ∃ ⟨ε, δ⟩ ∈ A. δ(σ) = x}
so together

ρX(A) = ⟨∃ ⟨ε, δ⟩ ∈ A. ε, σ 7→ {x : PX | ∃ ⟨ε, δ⟩ ∈ A. δ(σ) = x}⟩
Distributitivty of the Unit In the internal logic, the first diagram reads as

|= ρX ◦ ηF X = F (ηX)
a |= ρX(ηF X(a)) = F (ηX)(a)

at which point we can split the equation into the two cases
a |= ρ1(ηF X(a)) = idΩ(π1(a)) (left)
a |= ρ2(ηF X(a)) = (ηX)Σ(π2(a)) (right)

considering the simpler (left) case first,
a |= ∃ ⟨ε, δ⟩ ∈ ηF X(a). ε = π1(a)
a |= ∃ ⟨ε, δ⟩ ∈ {y | y = a} ∧ ε = π1(a)
a |= ∃ ⟨ε, δ⟩ . ⟨ε, δ⟩ = a ∧ ε = π1(a)

given that a is a Ω × XΣ, we can replace
ε, δ |= (∃ ⟨ε′, δ′⟩ . ⟨ε′, δ′⟩ = ⟨ε, δ⟩ ∧ ε′) = π1(⟨ε, δ⟩)

ε |= ε = ε
and then the right case, by extending both sides with a σ ∈ Σ,

a, σ |= ρ2(ηF X(a))(σ) = (ηX)Σ(π2(a))(σ)

a, σ, z |= z ∈ ρ2(ηF X(a))(σ) ⇐⇒ z ∈ ((ηX)Σ(π2(a)))(σ)
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considering the left hand side of the implication, we get
⟨ε, δ⟩ ∈ {y | y = a} ∧ δ(σ) = z

or
⟨ε, δ⟩ = a ∧ δ(σ) = z

or
(π2(a))(σ) = z,

while the right hand side gives us
z ∈ ((g 7→ ηX ◦ g)(π2(a)))(σ)

or
z ∈ (ηX ◦ π2(a))(σ)

or
z ∈ ηX((π2(a))(σ))

or
z ∈ {y | y = (π2(a))(σ)}

or
z = (π2(a))(σ),

giving us the final and positive result
a, σ, z |= (π2(a))(σ) = z ⇐⇒ z = (π2(a))(σ)

a |= a = a

Distributitivty of Multiplication We consider,
|= ρX ◦ µF X = F (µX) ◦ ρPX ◦ P (ρX)

A |= ρX(µF X(A)) = F (µX)(ρPX(P (ρX) (A)))
Once again, considering both cases separately:

A |= ρ1(µF X(A)) = π1(F (µX)(ρPX(P (ρX) (A))))
A |= ρ1(µF X(A)) = π1(ρPX(P (ρX) (A)))
A |= ρ1(µF X(A)) = ρ1(P (ρX) (A))
A |= ∃ ⟨ε, δ⟩ ∈ µF X(A). ε ⇐⇒ ∃ ⟨ε, δ⟩ ∈ P (ρX) (A). ε
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Here again, we consider the right and the left hand of the implication sep-
arately: On the left we can expand µF X(A),

∃ ⟨ε, δ⟩ . ⟨ε, δ⟩ ∈ {x | ∃s. s ∈ A ∧ x ∈ s} ∧ ε
or equivalently,

∃ ⟨ε, δ⟩ . (∃s. s ∈ A ∧ ⟨ε, δ⟩ ∈ s) ∧ ε.
On the other side, we can expand P (ρX)

∃ ⟨ε, δ⟩ ∈ P (ρX) (A). ε
which going by x ∈ P (f)(s) ⇐⇒ ∃y. y ∈ s ∧ f(y) = x, is

∃ ⟨ε, δ⟩ . ⟨ε, δ⟩ ∈ {x | ∃y. y ∈ A ∧ ρX(y) = x} ∧ ε,
or

∃ ⟨ε, δ⟩ . (∃s. s ∈ A ∧ ρX(s) = ⟨ε, δ⟩) ∧ ε,
or

∃ ⟨ε, δ⟩ . (∃s. s ∈ A ∧ ρ1(s) = ε ∧ ρ2(s) = δ) ∧ ε,
where we can disregard δ, as it doesn’t interest us beyond its existence,

∃ ⟨ε, δ⟩ . (∃s. s ∈ A ∧ (∃ ⟨ε′, δ′⟩ ∈ s. ε′) = ε) ∧ ε,
which simplifies to

∃ ⟨ε, δ⟩ . (∃s. s ∈ A ∧ ⟨ε, δ⟩ ∈ s) ∧ ε,
as δ′ was not constrained. This gives us the intended equality result for ρ1.

For the second case, we once again fix an arbitrary σ:
A, σ |= ρ2(µF X(A))(σ) = π2(F (µX)(ρPX(P (ρX) (A))))(σ)
A, σ |= ρ2(µF X(A))(σ) = (µX

Σ(π2(ρPX(P (ρX) (A)))))(σ)
A, σ |= ρ2(µF X(A))(σ) = µX(π2((ρPX(P (ρX) (A))))(σ))

A, σ, x |= x ∈ ρ2(µF X(A))(σ) ⇐⇒ x ∈ µX(π2((ρPX(P (ρX) (A))))(σ))
Simplispanding the LHS of the implication we get

x ∈ ρ2(µF X(A))(σ)
⇐⇒ x ∈ {y | ∃ ⟨ε, δ⟩ ∈ µF X(A). δ(σ) = y}
⇐⇒ x ∈ {y | ∃ ⟨ε, δ⟩ ∈ {z | ∃s. s ∈ A ∧ z ∈ s}. δ(σ) = y}
⇐⇒ x ∈ {y | ∃ ⟨ε, δ⟩ . (∃s. s ∈ A ∧ ⟨ε, δ⟩ ∈ s). δ(σ) = y}
⇐⇒ ∃ ⟨ε, δ⟩ . (∃s. s ∈ A ∧ ⟨ε, δ⟩ ∈ s). δ(σ) = x

The the RHS, consider
x ∈ µX(π2((ρPX(P (ρX) (A))))(σ))

⇐⇒ x ∈ {y | ∃s. s ∈ π2(ρPX(P (ρX) (A)))(σ) ∧ y ∈ s}
⇐⇒ x ∈ {y | ∃s. s ∈ (ρ2(P (ρX) (A)))(σ) ∧ y ∈ s}
⇐⇒ x ∈ {y | ∃s. s ∈ {z | ∃ ⟨ε, δ⟩ ∈ P (ρX) (A). δ(σ) = z} ∧ y ∈ s}
⇐⇒ x ∈ {y | ∃s. (∃ ⟨ε, δ⟩ ∈ P (ρX) (A). δ(σ) = s) ∧ y ∈ s}

where P (ρX) (A) = {w|∃s. v ∈ A ∧ w = ρX(v)},
⇐⇒ x ∈ {y | ∃s. (∃ ⟨ε, δ⟩ . (∃v. v ∈ A ∧ ⟨ε, δ⟩ = ρX(v)) ∧ δ(σ) = s) ∧ y ∈ s}
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allowing us once again to ignore ε,
⇐⇒ x ∈ {y | ∃s. (∃ ⟨ε, δ⟩ . (∃v. v ∈ A ∧ δ = ρ2(v)). δ(σ) = s) ∧ y ∈ s}
⇐⇒ ∃s. (∃ ⟨ε, δ⟩ . (∃v. v ∈ A ∧ δ = ρ2(v)) ∧ δ(σ) = s) ∧ x ∈ s

⇐⇒ ∃s. (∃ ⟨ε, δ⟩ . ∃v. v ∈ A ∧ ρ2(v)(σ) = s) ∧ x ∈ s

⇐⇒ ∃ ⟨ε, δ⟩ . ∃v. v ∈ A ∧ x ∈ ρ2(v)(σ)
⇐⇒ ∃ ⟨ε, δ⟩ . ∃v. v ∈ A ∧ x ∈ ρ2(v)(σ)

keeping in mind that ρ2(v) = (σ 7→ {x | ∃ ⟨ε, δ⟩ ∈ v ∧ δ(σ) = x}),
⇐⇒ ∃ ⟨ε, δ⟩ . ∃v. v ∈ A ∧ x ∈ {x | ∃ ⟨ε, δ⟩ ∈ v ∧ δ(σ) = x}
⇐⇒ ∃ ⟨ε, δ⟩ . ∃v. v ∈ A ∧ ∃ ⟨ε′, δ′⟩ ∈ v ∧ δ′(σ) = x

⇐⇒ ∃s. s ∈ A ∧ ∃ ⟨ε, δ⟩ ∈ s ∧ δ(σ) = x

This leaves us with the question,
∃ ⟨ε, δ⟩ . (∃s ∈ A. ⟨ε, δ⟩ ∈ s). δ(σ) = x

?⇐⇒ ∃s ∈ A. ∃ ⟨ε, δ⟩ ∈ s. δ(σ) = x
which holds by the commutativity of ∃ given that ⟨ε, δ⟩ is “free” in A.

This concludes the proof, demonstrating that the EM-distributive law for
holds in E for ρX . ■
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