
MBProg Summary

Florian Guthmann
florian.guthmann@fau.de

2022-03-28

Semantics for Computation

Evaluation Strategies

α -conversion C[λx.t]→αC[λy.t[y/x]]

β -reduction C[(λx.t)s]→βC(t[s/x])

η -reduction C[λx.fx→ηC[f]]

Confluence (Church-Rosser) Independent reductions starting from the same term can always be joined.

Church Numerals
0=λf.λz.z

1=λf.λz.fz

2=λf.λz.ffz

Standard

We impose a left-most-outermost evaluation order.

Standardization Theorem If s→∗αβ t and t is αβ -normal, then s→∗so t and t is so-normal.

Call-by-Name (lazy)

small-step
• no more rewriting under λ
• all terms are closed

(λx.p)q→p[q/x]

p→p′

pq→p′q

big-step

λx.p⇓λx.p
q⇓λx.p′ p′[q/x]⇓v

pq⇓v
Call-by-Value (eager)

Value A value is a term of the form λx.t

small-step
p→p′

pq→p′q

q→q′ p is a value

pq→pq′
q is a value

(λx.p)q→p[q/x]

big-step

λx.p⇓λx.p
p⇓λx.p′ q⇓q′ p′[q′/x]⇓c

pq⇓c
PCF

Simply-Typed Lambda-Calculus
Type:=A,B,C,...︸ ︷︷ ︸

base types

| 1︸︷︷︸
unit type

|A×B|A→B

Ω=(λx.xx)(λx.xx) is not typable. Thus, →αβ is strongly normalising for simply-typed lambda-calculus.
We obtain PCF by:

• adding the fixpoint combinator YA :(A→A)→A for every type A
• fixing Nat and Bool as the base types
• postulating the arithmetic and logical operations

Contextual Equivalence A term context C is of ground type if its type is either Nat, Bool or 1. Two PCF terms Γ`s :A
and Γ`t :A are contextually equivalent, if for all contexts C of ground type and for all values v, C[s]⇓v iff C[t]⇓v
Operational Semantics

Call-by-Name A value is
• a term of base or unit type
• a pair of closed terms
• a closed term of the form λx.t

1

Call-by-Value
• a term of base or unit type
• a pair of values
• a closed term of the form λx.t

Denotational Semantics

Partial Order A partial order (A,v) is a relation, such that:
• ava (reflexivity)
• avb∧bvc⇒avc (transitivity)
• avb∧bva⇒a=b (antisymmetry)

Complete Partial Order A complete partial order (pre-domain) is a partial order (A,v) such that for any infinite chain
a1va2v ...

there is a least upper bound a such that
• ∀i.aiva
• ∀i.aivb⇒avb
We denote such a by

⊔
iai

Domain A pointed cpo (domain) is a cpo that contains an element ⊥ such that ∀a∈A.⊥va
Monotonicity A function f :A→B between partial orders is monotone if

avb⇒f(a)vf(b)

Scott-continuity A monotone function f :A→B between cpos is continuous if for any chain a1va2v ...

f

(⊔
i

ai

)
=
⊔
i

f(ai)

Strictness A function f :a→B is strict if f(⊥)=⊥
Products of Predomains

A×B={(a,b)|a∈A,b∈B} (a1,b1)v(a2,b2)ifa1va2∧b1vb2
Pairing is continuous:

⊔
i(ai,bi)=

(⊔
iai,
⊔
jbj

)
Lifting predomains and functions

A⊥=A]⊥=(?,a)|a∈A∪(⊥,?) avb if a=⊥ or a∈A,b∈A and avb

f∗(x)=

{
f(y) if x=byc
⊥ if x=⊥

Function Spaces Let (A,v), (B,v) be predomains. (A→B,v) is the function space predomain where:
A→B={f :A→B |f is continuous} fvg⇔∀x.f(x)vg(x)

We define:
curry:(A×B→C)→(A→(B→C))

uncurry:(A→(B→C))→(A×B→C)

ev:(A→B)×A→B

If B is a domain, so is A→B with the bottom element being λx.⊥
Kleene‘s Fixpoint Theorem Let f be a continuous function f :D→D over a domain D
• least fixpoint: ∃µf∈D such that f(µf)=µf and ∀x∈D.f(x)=x⇒µfvx
• µf=

⊔
if
i(⊥), where f0(x)=⊥,fi+1(x)=f(fi(x))

• least prefixpoint: f(µf)vµf and ∀x∈D.f(x)vx⇒µfvx
CBN

Soundness A denotational semantics is sound if
p⇓v⇒JpK=v

Adequacy A denotational semantics is adequate if for p of ground type
JpK=v⇒p⇓v

for every value v

2

Compositionality
JC[t]K=JCK[JtK]

J1K=1⊥

JNatK=Nat⊥

JBoolK=Bool⊥

JA×BK=JAK×JBK
JA→BK=JAK→JBK

Given a term in context Γ ` t : A where Γ = x1 : A1, ... ,xn : An the semantics JΓ ` t : AK is a continuous function
JA1K×···×JAnK→JAK (J...Kρ=J...K(ρ))

JΓ`xi :AiKρ=proji(ρ)

JΓ`? :1Kρ=b?c
...

JΓλx.t :A→BKρ=(curryJΓ,x :A`t :BK)(ρ)
JΓst :BKρ=ev(JΓ`s :A→BKρ,KΓ`t :AKρ
JΓ`YAK=µ

CBV

Full Abstraction

The implication p=ctx q⇒ JpK = JqK is called full abstraction. It would mean that operational semantics and denotational
semantics agree as far as program equivalence. However consider the por function. It is not definable in PCF, but it is a
continuous function and thus can be used in the denotational semantics.

por(True,x)=True

por(x,True)=True

por(False,False)=False

por(x,y)=⊥
We can construct a function t :Bool→(Bool→Bool→Bool)→Bool in PCF that tests if a given function is por.

Category Theory

Category A Category C consist of a collection of objects Ob(C) and a collection of morphisms HomC(A,B) for any A,B∈Ob(C)
such that:
• for every A∈Ob(C) there is an identity morphism idA∈HomC(A,A)
• for any f∈HomC(B,C) and g∈HomC(A,B) we can form a composition f◦g∈HomC(A,C)
• id◦f=f (left identity)
• f◦id=f (right identity)
• (f◦g)◦h=f◦(g◦h) (associativity)

Terminal Object A terminal object is an object 1∈Ob(C) such that for any A∈Ob(C), there is a unique morphism !A :A→1.

Initial Object An initial object is an object 0∈Ob(C) such that for any A∈Ob(C), there is a unique morphism ¡A :0→A.

Isomorphism An isomorphism between objects A and B in a category C is a pair of morphisms f :A→B,g :B→A such that:

A B

A B

f

idA

g idB

f

Cartesian Category A cartesian category is a category with a terminal object an binary products

Products and Coproducts

Binary Products

A product of objects A,B in a category C is a triple (A×B,fst,snd) such that for any C∈Ob(C) and f :C→A and g :C→B
there is a unique morphism 〈f,g〉 :C→A×B:

C

A A×B B

f g〈f,g〉

sndfst

3

Coproducts

A coproduct of objects A,B in a category C is a triple (A+B,inl,inr) such that for any f :A→C and g :B→C there is a
unique morphism [f,g] :A+B→C:

C

A A+B B
inl

f
[f,g]

inr

g

Functor

A covariant Functor F between categories C and D is a correspondence sending any A∈Ob(C) to FA∈Ob(D) and any
f∈HomC(A,B) to Ff∈HomD(FA,FB) such that:

F(idA)=idFA F(f◦g)=F(f)◦F(g)

Example: Forgetful Functor
G :Cpo→Set G(A,v)=A G(f)=f

Example: Endofunctor An endofunctor is a functor from a category into itself.

Contravariant Functor A functor F :Cop→D is a contravariant functor from C to D.

Bifunctor A bifunctor is a functor C×D→E.
Natural Transformations

Let C,D be categories and F,G :C→D be functors. A natural transformation ϑ :F→G is a family of morphisms
(ϑC :FC→GC)c∈Ob(C)

such that ∀f :C→C′ in C:
FC FC′

GC GC′

ϑC

Ff

ϑC′

Gf

Monad

Kleisli Triple

A Monad in a category C is given by a triple (T,η,−∗) where:
• T :Ob(C)→Ob(C)
• unit: η is a family (ηX :X→TX)x∈Ob(C)
• Kleisli lifting: for any f :A→TB, f∗ :TA→TB
such that:

η∗=id f∗η=f (f∗g)∗=f∗g∗

Kleisli Category

From Endofunctor and Natural Transformation

A Monad in a category C consists of an endofunctor T :C→C an natural transformations
• unit: η :Id→T
• multiplication: µ :TT→T
such that:

µ◦µT =µ◦Tµ µ◦ηT =id=µ◦Tη
TTTX TTX TX TTX TX

TTX TX TX

µTX

TµX µX

ηTX

idTX

µX

TηX

idTX
µX

Tensorial Strength

Cartesian Closure A category C is cartesian closed(CCC) if it is cartesian, and for any objects B and C there is an object
BC, called an exponential, for which

curry:Hom(A×B,C)∼=Hom(A,CB)
which is natural in A such that

Hom(A×B,C) Hom(A,CB)

Hom(A′×B,C) Hom(A′,CB)

curry

Hom(f×B,C) Hom(f,CB)

curry

We can generalize the CBV semantics of PCF by:
• replace (−)⊥ with T
• replace “let” with “do”
• replace b−c with return

4

Strong Functor A strong Functor is a functor F :C→D between cartesian categories C and D, plus strength, which is a
natural transformation τA,B :A×FB→F(A×B) such that

1×FX FX

F(1×X)

snd

τ
F(snd)

X×Y ×FZ F((X×Y)×Z)

X×(Y ×FZ) F(X×(Y ×Z))

X×F(Y ×Z)

τ

assoc Fassoc

X×τ τ

Strong Monads

A monad is strong if it is strong as a functor and η,µ are strong natural transformations.

X×Y T(X×Y)

X×TY

η

id×η
τ

X×TTY X×TY

T(X×TY) T(X×Y)

TT(X×Y)

id×µ

τ τ

Tτ µ

Commutative Monads

A strong monad T is commutative if

TA×TB T(TA×B) TT(A×B)

T(A×TB)

TT(A×B) T(A×B)

τ

τ̂

T τ̂

µ

Tτ

µ

In other words,
dox=p;doy=q;return〈x,y〉==doy=q;dox=p;return〈x,y〉

Monoidal Categories

A category C is monoidal if there exists:
• a bifunctor C×C→C (tensor product)
• an object I (unit object)
• natural transformations

αA,B,C :A⊗(B⊗C)∼=(A⊗B)⊗C λA :I⊗A∼=A ρA :A⊗I∼=A
A monoid in a monoidal Category C is a triple (M,ε,�) where M is an object in C, � is a morphism M⊗M→M and ε is
a morphism I→M such that:

M⊗I M⊗M I⊗M

M

ρM

idm⊗ε

�
λM

ε⊗idM

M⊗(M⊗M) (M⊗M)⊗M

M⊗M M M⊗M

αM,M,M

idM⊗� �⊗idM

� �

5

