
Introduction to Symbolic AI
A summary for the lecture unfortunately known as “AI I”

florian.guthmann@fau.de

March 12, 2025

1 Mathematical Prolegomena

1.1 Set Theory

Set theory is usually defined in terms of first-order logic,
a topic which is covered in more depth in section 4.2.

The foundational relation between sets is that of member-
ship. We write x ∈ A if x to express that x is a member of
A. The empty set containing no elements is denoted as ∅.
The usual relations and operations are the following:

Set equality Set equality is extensional, i.e. two sets are
said to be equal iff they contain the same elements.

A = B ⇐⇒ (∀x. x ∈ A ⇐⇒ x ∈ B)
Set Inclusion A set A is called a subset of a set B iff all

elements of A are also elements of B. We write
A ⊆ B :⇐⇒ (∀x. x ∈ A =⇒ x ∈ B)

A set A is called a proper subset of a set B iff A ⊆ B
and A ̸= B. We write A ⊂ B or A ⊊ B.

Union

Given two sets A and B we can form a new set, denoted
as A ∪ B, the set that contains all elements of both A
and B. Its elements can be characterised as follows:

x ∈ A ∪B ⇐⇒ x ∈ A or x ∈ B
Intersection

Given two sets A and B we can form a new set, denoted
as A ∩ B, the set that contains those elements which
are members of both A and B. Its elements can be
characterised as follows:

x ∈ A ∩B ⇐⇒ x ∈ A and x ∈ B
Two sets A and B are disjoint if their intersection

A ∩B is empty.
Difference

Given two sets A and B we can form a new set, denoted
as A \ B (or sometimes A − B), the set of all elements
of A that are not members of B.

Set Comprehension Given a set A and a formula P (x)
over x we can form a new set, denoted as {x ∈ A |P (x)},
the set of all elements x ∈ A for which P (x) holds.

Family of sets Given a set I called the index set, if we
can associate to any i ∈ I a set Ai we call (Ai)i∈I a
family of sets indexed over I.

Big union/ Big intersection Given a family (Ai)i∈I
we can form a new set, denoted as

⋃
i∈I Ai, the set

containing all elements of all Ai. Its elements can be
characterised as follows:

x ∈
⋃
i∈I

Ai ⇐⇒ ∃ i ∈ I. x ∈ Ai

Likewise, we can form the set
⋂

i∈I Ai of those elements
that are members of all Ai:

x ∈
⋂
i∈I

Ai ⇐⇒ ∀ i ∈ I. x ∈ Ai

Note how the union and intersection of two sets are
just special cases of their big counterparts with a two
element index set.

Disjoint Union Let (Ai)i∈I be a family of sets. Then⊎
i∈I

Ai := {(i, a) | i ∈ I, a ∈ Ai}

is their disjoint union. For a two-element index set
I := {0, 1} we write A0 ⊎A1.

Cartesian Product Given two sets A and B we can form
a new set, denoted as A× B, of all pairs of elements of
A and B.

A×B := {(x, y) |x ∈ A, y ∈ B}
Power Set Given a set A, the collection of all subsets of

A is also a set, denoted as P (A).
P (A) := {B |B ⊆ A}

One may therefore use B ⊆ A and B ∈ P (A)
interchangeably.

Kleene star Given a set A of, the kleene star (or free
monoid) A∗ is the set of “words” using “characters” of
A. The empty word is denoted as ε ∈ A∗.

1.1.1 Relations and Functions

Def. A (binary) relation between two sets A and B is a
subset R ⊆ A×B. For x ∈ A, y ∈ B one may write x R y
instead of (x, y) ∈ R.

Def (Inverse Relation). For any binary relation R ⊆ A×A
there exists the inverse relation

R− := {(y, x) | (x, y) ∈ R}

Def. Given two binary relations R ⊆ A× B, S ⊆ B × C,
their composition (S ◦R) ⊆ A× C is given by

S ◦R := {(x, z) | ∃ y ∈ B. (x, y) ∈ R ∧ (y, z) ∈ S}

Def. Given a relation R ⊆ A×A we define for n ∈ N \{0}:
R1 := R

Rn+1 := R ◦Rn

Def (Function). A relation f ⊆ A×B is called
left total iff for any x ∈ A there exists a y ∈ B with x f y
right unique iff for any x ∈ A, y, z ∈ B with x f y and

x f z it follows that y = z
A relation that is both left total and right unique is called
a function. We denote such a relation as f : A → B. For
any x ∈ A there is a uniquely determined element in B,
which we denote f(x), such that (x, f(x)) ∈ f .

We denote the domain dom(f) := A and the codomain
codom(f) := B.

Def. Given two functions f : A → B and g : B → C their
composition (g ◦ f) : A → C1 is the function given by

(g ◦ f)(x) = g(f(x))

Def (Image and Preimage). Let f : A → B be a function
and U ⊆ A a subset of A. We call the set

f (U) := {f(x) |x ∈ U}
the image of U . Now let W ⊂ B be a subset of B. We call
the set

f−1 (W) := {x ∈ A | f(x) ∈ W}
the preimage of W .

Def (Properties of functions). Let f : A → B be a function.
We call f
injective iff for any x, y ∈ A with f(x) = f(y) it follows

that x = y (i.e. the preimage f−1 ({y}) contains at most
one element for any y ∈ B)

1Note that some authors use f ; g (or even f ◦ g) to denote the
same function, switching the order of f and g from “applicative” (like
in g ◦ f) to “diagrammatic”.

surjective iff for any y ∈ B there exists a x ∈ A such that
f(x) = y (i.e. f (A) = B)

bijective iff it is both injective and surjective

Def ((Co)Restriction). Let f : A → B be a function and
U ⊆ A a subset of its domain. The restriction f |U of f
to U is the function

f |U : U → B

u 7→ f(u)

Now let S ⊆ B be a subset of f ’s codomain such that

f (A) ⊆ S. Then the corestriction f |S is the function

f |S : A → S

a 7→ f(a)

Def (Partial Function). A relation f ⊆ A×B that is right
unique is called a partial function f : A ⇀ B. For x ∈ A,
if it exists, the unique y ∈ B such that (x, y) ∈ f is denoted
as f(x).

Equivalently, a partial function f : A ⇀ B is a func-
tion f : U → B where U ⊆ A. The domain is then
dom(f) := U .

Def (Properties of Relations). LetA be a set andR ⊆ A×A
be a relation. R is called

reflexive iff x R x for any x ∈ A
symmetric iff for all x, y ∈ A with x R y it follows that

y R x
transitive iff for all x, y, z ∈ A with x R y and y R z it

follows that x R z
antisymmetric iff forall x, y ∈ A with x R y and y R x

it follows that x = y

Def. A relation ∼ ⊆ A× that is reflexive, symmetric and
transitive is called an equivalence.

Def. A relation ≺ ⊆ A× that is reflexive, antisymmetric
and transitive is called a partial order.

Def (Reflexive Closure). Given a relation R ⊆ A×A, its
reflexive closure R ∪ id is the smallest reflexive relation
containing R.

Def (Symmetric Closure). Given a relation R ⊆ A × A,
its symmetric closure R ∪R− is the smallest symmetric
relation containing R.

Def (Transitive Closure). Given a relation R ⊆ A×A, its
transitive closure R+ is the smallest transitive relation
containing R. It is given by

R+ := R ∪ (R ◦R) ∪ (R ◦R ◦R) ∪ · · · =
∞⋃

n=1

Rn

Def. A set A is finite with cardinality |A| ∈ N if there
is a bijection ϱ : A → {n ∈ N |n < |A|}.

Ex (Cardinalities).

• |∅| = 0
• |{foo,bar,baz}| = 3

Def. A set A is countable if there is a bijection ϱ : A → N.

1.1.2 Examples: Algebraic Structures

Equipping sets with operations and laws for those operations
leads to several natural structures. Functions between those
“sets with structure” that behave well (i.e. are “structure
preserving”) are called homomorphisms.2

Def. A magma (M,⊗) is a set M with a binary operation
⊗ : M ×M → M .
A magma-homomorphism ϱ between two magmas

(M,⊗), (N,⊕) is a function ϱ : M → N such that for all
a, b ∈ M

ϱ(a⊗ b) = ϱ(a)⊕ ϱ(b)

Def. A monoid (M,⊗, e) is a magma (M,⊗) together
with a neutral element e ∈ M such that
• ⊗ : M ×M → M is associative:

∀x, y, z ∈ M. (x⊗ y)⊗ z = x⊗ (y ⊗ z)
• e ∈ M is neutral:

∀x ∈ M.x⊗ e = x = e⊗ x
A monoid homomorphism ϱ between two monoids

(M,⊗, eM), (N,⊕, eN) is a magma-homomorphism
ϱ : M → N such that

ϱ(eM) = eN

Ex (Monoids).
A∗: For any set A, the kleene-star A∗ forms a monoid with

word concatenation and the empty word.
strings: In most programming languages strings with

string concatenation and the empty string form a monoid.
This is in fact a special case of the above example3 with
A := char

endo-functions For any setA, the set of “endo”-functions
AA := {f : A → A} on A forms a monoid with function
composition and the neutral element

idA : A → A

a 7→ a

1.2 Computability Theory

2 Rational Agents

Def. An agent is an entity that
• perceives (via sensors)
• acts (via actuators)

Def (Agent function). A percept is the perceptual input
of an agent at some instant.

A action is an employment of actuators. Let a be an agent
that perceives percepts from a set P and can perform actions
from a set A. The agent function fa of a is a function

fa : P
∗ → A

Def. An agent program is an algorithm that implements
an agent function.

Def. A performance measure is a function evaluating
a sequence of environments.

An agent acts rationally if its choice of actions maximise
the expected value of the performance measure.

Def (PEAS). A task environment is given by
• Performance measure
• Environment
• Actuators
• Sensors

2This would quite naturally lead to a discussion of category theory,
but that is beyond the scope of this lecture and summary

3shying away from any unicode shenanigans

Environments An environment E of an agent a is called
• fully observable if a’s sensors have access to the
complete state of E (else partially observable).

• deterministic if the next state of E is completely deter-
mined by its current state and a’s action (else stochastic).

• episodic if E can be divided into atomic (where a
perceives and performs a single action) episodes (else
sequential).

• dynamic if E can change without a performing an
action, semidynamic if only the performance measure
changes (else static)

• discrete if the set of states of E and the set of actions
of a are countable (else continuous)

• single agent if only one agent acts on the environment
(else multi-agent)

2.1 Agent Types

Simple reflex agent An agent that bases its actions only
on the last percept. The agent function reduces to
fa : P → A.

Model-based agent A reflex agent that maintains a
world model to determine its actions. The agent function
depends on
• a set S of states
• a sensor model ϱ : S × P → S that determines the
next state given the current state and a percept

• a transition model τ : S ×A → S
• an action function f : S → A
The agent function is then given by p 7→ f(τ(ϱ(s, p), a)).

Goal-based agent Amodel-based agent with a transition
model T : S → S and a set G ⊆ S of goals. Its goal
function f selects an action to best reach G.

Utility-based agent An agent with a world model and a
utility function that evaluates states. The agent chooses
actions to maximise the expected utility.

Def. A state representation is
• atomic if it has no internal structure
• factored if each state is characterized by attributes and
their values

• structured if each state includes representations of
objects and their relationships

3 Solving Problems by Searching

Def (Search Problem). A search problem is a tuple
(S,A, τ, I,G) where
• S is a set of states
• A is a set of actions
• τ : A × S → P (S) is a transition model that assigns
to an action and a state a set of successor states

• I ⊆ S is a set of initial states
• G ⊆ S is a set of goal states
A solution to a search problem (S,A, τ, I,G) is a

sequence a1, a2, . . . , an of actions such that there exists a
sequence s0, s1, sn of states where
• s0 ∈ I
• τ(ai, si−1) ̸= ∅ for all 1 ≤ i < n(ai is applicable to si−1)
• si ∈ τ(ai, si−1) for all 1 ≤ i < n
• sn ∈ G

Def. Let Π := (S,A, τ, I,G) be a search problem. A cost
function is a function c: A → R+ that assigns a cost to
an action. The cost of a solution a1, a2, . . . , an is given by

n∑
i=1

c(ai)

Def. A search problem (S,A, τ, I,G) is called determin-
istic if

• there is exactly one initial state, I = {s0}
• τ(a, s) contains at most one successor state

Def. Let Π := (S,A, τ, I,G) be a search problem. A
heuristic for Π is a function h : S → R+ ∪{∞} so that
h(s) = 0 for all s ∈ G.

Def. Let Π := (S,A, τ, I,G) be a search problem. Then
the goal distance function h⋆ : S → R+ ∪{∞} maps a
state s to the cost of the cheapest path from from s to some
goal state.

Def. Let Π := (S,A, τ, I,G) be a search problem and
h : S → R+ ∪{∞} a heuristic for Π. h is called admissible
if it always underestimates, i.e.

∀ s ∈ S. h(s) ≤ h⋆(s)

3.1 Adversarial Search

3.2 Constraint Satisfaction

Def (Constraint Satisfaction Problem). A constraint
satisfaction problem (V, (Dv)v∈V , C) consist of

• a set of variables V
• a domain Dv for each variable v ∈ V
• a set C of “constraints” (a proposition containing finitely
many variables)

Def. Constraints are classified by the number of constraint
variables they involve:

• Unary constraints involve a single variable
• Binary constraints involve two variables
• Higher-Order constraints involve more than two
variables

A constraint network is callled binary iff all of its
constraints are binary.

Prop. Any higher-order constraint can be equivalently
expressed by a finite set of binary constraints by introducing
additional variables.

Def. Given a binary CSP, a constraint network
(V, (Dv)v∈V , C) consist of

• a set V of variables
• a domain Dv for each variable v ∈ V
• a set of constraints

C := {Cu,v ⊆ Du ×Dv |u, v ∈ V, u ̸= v}

Def. Let γ := (V, (Dv)v∈V , C) be a constraint net-
work. A variable assignment is a partial function
φ : V ⇀

⋃
v∈V Dv such that φ(v) ∈ Dv for all v ∈ dom(φ).

If φ is left total, we call it a total variable assignment.

Def. Let γ := (V, (Dv)v∈V , C) be a constraint network and
φ : V ⇀

⋃
v∈V Dv a variable assignment.

φ satisifies a constraint Cu,v iff u, v ∈ dom(φ) and
(φ(u), φ(v)) ∈ Cu,v

φ is consistent with γ iff it satisfies all constraints in γ.

Def. Let φ, ϱ be variable assignments. φ extends ϱ iff
dom(ϱ) ⊆ dom(φ) and φ|dom ϱ = ϱ (i.e. ϱ agrees with the

restriction of φ to ϱ’s domain)

Def. A solution of a constraint-network γ is a consistent
(total) variable assignment.

3.2.1 Constraint Propagation

Def. Two constraint networks γ := (V, (Dv)v∈V , C) and
γ′ := (V, (D′

v)v∈V , C
′) are equivalent iff they have the

same solutions. We write γ ≡ γ′

γ′ is tighter than γ iff
• D′

v ⊆ Dv for all v ∈ V
• C ′

u,v ̸∈ C or C ′
u,v ⊆ Cu,v for all u, v ∈ V , u ̸= v and

C ′
u,v ∈ C ′

We write γ′ ⊑ γ.

Prop. Let γ, γ′ be constraint networks such that γ′ ⊑ γ
and γ ≡ γ′. Then γ′ has the same solutions, but fewer
consistent assignments than γ.

Def (Forward Checking). Let γ := (V, (Dv)v∈V , C)
be a constraint network, u ∈ V a variable and φ be a
variable assignment for γ such that u ∈ dom(φ). The
process of obtaining an equivalent constraint network
γ′ := (V, (D′

v)v∈V , C) where

D′
v = {d ∈ Dv |Cu,v ∈ C =⇒ (φ(u), d) ∈ Cu,v}

is called forward checking.

Def (Arc Consistency). Let γ := (V, (Dv)v∈V , C) be a con-
straint network. A variable u ∈ V is arc consistent relative
to v ∈ V if either Cu,v ̸∈ C or for every d ∈ Du there exists
a t ∈ Dv such that (d, t) ∈ Cu,v. γ is arc consistent if every
variable u ∈ V is arc consistent to every variable v ∈ V .

The process of obtaining an equivalent constraint network
γ′ := (V, (D′

v)v∈V , C) where

D′
v =

⋂
u∈V

{d ∈ Dv |Cv,u ∈ C =⇒ ∃ d′ ∈ Du. (d, d
′) ∈ Cv,u}

is called arc consistency.

4 Logic

4.1 Propositional Logic

The set P(V) of formulae of propositional logic are given by
A,B := X variable

| ⊤ truth

| ⊥ falsity

| ¬A negation

| A ∧B conjunction

| A ∨B disjunction

| A =⇒ B implication

| A ⇐⇒ B equivalence

where X ∈ V is in the set of variables V.
Def. A model

(
D, J−K−

)
for propositional logic consist of

• a universeD (typically the two-element boolean algebra)
• an interpretation function J−K that assigns meaning to
all connectives

• a family of value functions J−Kφ : P(V) → D where
φ : V → D is a variable assignment.
It is defined recursively using the interpretation

function:
JXKφ = φ(X)

J¬AKφ = J¬K (JAKφ)

JA ∧BKφ = J∧K (JAKφ , JBKφ)
...

Two formulae A and B are called equivalent iff
JAKφ = JBKφ for all assignments φ.

∧ ⊥ ⊤
⊥ ⊥ ⊥
⊤ ⊥ ⊤

∨ ⊥ ⊤
⊥ ⊥ ⊤
⊤ ⊤ ⊤

=⇒ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊤

Def (Entailment). Let φ be a variable assignment, A a
propositional formula. We write φ ⊨ A for JAKφ = ⊤.
Now let B be a propositional formula. If it holds that

for all φ such that φ ⊨ A it is also the case that φ ⊨ B, then
we write A ⊨ B.

Def. LetM := (D, J−K−) be a model. A formulaA is called
• true under φ if JAKφ = ⊤
• false under φ if JAKφ = ⊥
• satisfiable in M if there exists a φ such that JAKφ = ⊤
• valid in M if JAKφ = ⊤ for all φ

• falsifiable in M if there exists a φ such that JAKφ = ⊥
• unsatisfiable in M if JAKφ = ⊥ for all φ

Def (Deduction). A relation ⊢C⊆ P (P(V)) × P(V) is
called a derivation relation iff
• Γ ⊢C A if A ∈ Γ
• if Γ ⊢C A and Γ′ ∪ {A} ⊢C B then Γ ∪ Γ′ ⊢C B
• if Γ ⊢C A and Γ ⊆ Γ′ then Γ′ ⊢C A

Def. A formula A is called a theorem in a calculus C if
there exists a proof ⊢C A.

Def (Inference Rule). Derivation relations are typically
defined inductively, i.e. via a set C of inference rules like

Γ ⊢C A Γ ⊢C A =⇒ B

Γ ⊢C B

An inference rule
Γ ⊢ A1 . . .Γ ⊢ An

C
is called derivable

in a calculus ⊢C if there is a derivation A1, . . . , An ⊢C C.
An inference rule is called admissible in a calculus C

if its addition does not produce new theorems.

Def. Let ⊢C be a derivation relation. There are two ways
to relate deduction and entailment:
Soundness ⊢C is sound if whenever A ⊢C B then A ⊨ B.
Completeness ⊢C is complete if whenever A ⊨ B then

A ⊢C B

4.1.1 Propositional Natural Deduction

A bracketed formula like [A] indicates that its proof is in
context. A context is a set of formulae that we currently
assume to be true. Taking the introduction rule for impli-
cation as an example, we can see that this means that to
prove A =⇒ B we must provide a proof of B, assuming A.

Sequent Style We can make this more explicit by
switching to “sequent-style” natural deduction. This
introduces the operator ⊢, which takes as its left argument
a context and as its right argument a formula. Γ ⊢ A asserts
that A can be proven using only the context Γ. We can
change most natural deduction rules that do not involve
contexts quite easily, i.e. ∧I becomes

Γ ⊢ A Γ ⊢ B ∧I
Γ ⊢ A ∧B

For notational convenience, we write Γ, A for the context
obtained “extending” a context Γ with a formula A, i.e.
Γ ∪ {A}. For a singleton context {A} we will omit the curly
braces and just write A.

Those rules where we previously used bracketed formulae
to indicate assumptions are changed as follows:

Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C
∨E

C

Γ, A ⊢ B
=⇒I

A =⇒ B

Γ, A ⊢ C Γ, A ⊢ ¬C
¬I¬A

Figure 1: Sequent-style propositional rules of natural
deduction

Since we want to be more explicit about the use of
contexts, we add a separate rule for proving a formula that
is in the current context:

P ∈ Γ
ctx

Γ ⊢ P

Fitch Style This is another notation used prominently in
the GLoIn lecture4. The calculus used is the same, namely
natural deduction, but the proof tree is “linearized” such
that it can be written down more easily. Consider the two
proofs in Figure 2, done in fitch/sequent style: The proofs
look similar, ignoring the obvious difference that the fitch
“proof tree” grows from left to right, not bottom to top.
The main difference is in how we deal with assumptions.
Starting a subproof with an assumption in fitch-style
corresponds to adding the formula to the current context
in a new branch of the sequent-style proof tree. Using a
formula from the context is implicit in the fitch proof.

Def (Test calculus). One can exploit the fact that
A valid ⇐⇒ ¬A unsatisfiable

This means that to prove a formula A valid, it suffices to
show that ¬A ⊢T ⊥.

4.1.2 Propositional Tableau

(A ∧B)
⊤

(A)
⊤

(B)
⊤

(A ∧B)
⊥

(A)
⊥

(B)
⊥

(¬A)
⊤

(A)
⊥

(¬A)
⊥

(A)
⊤

(A =⇒ B)
⊤

(A)
⊥

(B)
⊤

(A =⇒ B)
⊥

(A)
⊤

(B)
⊥

(A ∨B)
⊤

(A)
⊤

(B)
⊤

(A ∨B)
⊥

(A)
⊥

(B)
⊥

(A)α

(A)β α ̸= β

⊥

Figure 3: Rules of the analytical tableau calculus

4This section is mainly intended to help students that have taken
that lecture carry over their intution. Fitch style is not actually
covered in the lecture at hand.

Def (Tableau). A tree produces by the above inference
rules of is called a tableau. A tableau is saturated if no
rule adds new material. A branch is closed if it ends in ⊥.
A tableau is closed if all of its branches are.

4.1.3 Resolution

Resolution is a test calculus that operates on formulae in
conjunctive normal form. The calculus then consist of just
two rules:

(A)
⊤ ∨ C (B)

⊥ ∨D σ = mgu(A,B)

σ(C) ∨ σ(D)

Aα ∨Bα ∨ C σ = mgu(A,B)

σ(A) ∨ σ(C)

Figure 4: Rules of the resolution calculus

Unification

S ∪ {x .
= x} → S (delete)

S ∪ {f(E1, . . . , En)
.
= f(D1, . . . , Dn)}

→ S ∪ {E1
.
= D1, . . . , En

.
= Dn}

(decomp)

S ∪ {f(E1, . . . , En)
.
= g(D1, . . . , Dm)} → ⊥ (conflict)

S ∪ {E .
= x} → S ∪ {x .

= E} (orient)

S ∪ {x .
= E} →{

⊥ x ∈ free(E), x ̸= E

S [E/x] ∪ {x .
= E} x ̸∈ free(E), x ∈ free(S)

(occurs/elim)

4.2 First-Order Logic

Def (Signature). A signature is a tuple Σ := (Σf ,Σp, ar)
where

• Σf is a set of function symbols
• Σp is a set of predicate symbols
• ar : Σf ⊎ Σp → N is a function assigning each symbol an
arity, i.e. the number of arguments it takes.

We write Σf
n and Σp

n for the sets of n-ary function and
predicate symbols, respectively.

Def (Terms). Let V be a set of variables, Σ a signature.
The set of terms wfι(V,Σ) is defined by

• V ⊆ wfι(V,Σ)
• if f ∈ Σf

n and A1, . . . An ∈ wfι(V,Σ) then
f(A1, . . . , An) ∈ wfι(V,Σ)

Def (Propositions). Let V be a set of variables, Σ a
signature. The set of propositions wf(V,Σ) is defined by

• if P ∈ Σp
n and A1, . . . , An ∈ wfι(V,Σ) then

P (A1, . . . , An) ∈ wf(V,Σ)
• if A,B ∈ wf(V,Σ) then ¬A,A ∧ B,A ∨ B,A =⇒ B ∈
wf(V,Σ)

• ⊤,⊥ ∈ wf(V,Σ)
• if v ∈ V and A ∈ wf(V,Σ) then ∀ v.A,∃ v.A ∈ wf(V,Σ)

Def (Free Variables). Given a formula A, the set
free(A) ⊂ V of free variables of A contains those variables

1. A ∨B Premise

2. A Assumption

3. B ∨A ∨Ir

4. B Assumption

5. B ∨A ∨Il

6. B ∨A ∨E

ctx
(A ∨B) ⊢ A ∨B

ctx
(A ∨B), A ⊢ A

∨Ir
(A ∨B), A ⊢ B ∨A

ctx
(A ∨B), B ⊢ B

∨Il
(A ∨B), B ⊢ B ∨A

∨E
(A ∨B) ⊢ B ∨A

Figure 2: Comparison of Fitch and Sequent Styles

in A that are not bound by a quantifier.

free(v) = {v}

free(f(A1, . . . , An)) =

n⋃
i=1

free(Ai)

free(P (A1, . . . , An)) =

n⋃
i=1

free(Ai)

free(⊥) = free(⊤) = ∅
free(A ∧B) = free(A ∨B) = free(A) ∪ free(B)

free(∀ v.A) = free(∃ v.A) = free(A) \ {v}

Def (Substitution). A substitution is a function σ : V →
wfι(V) with finite support (i.e the set {x |x ̸= σ(x)} is
finite). We denote by [A/X] the substitution that maps
the variable X to the term A and behaves like the identity
function on all other variables. A perhaps preferable
notation would be [X := A], but we will stick with the above.
Applying a substition σ to a term/formula is done via

recursion over the syntatic structure:

On terms

v σ = σ(v) (where v ∈ V)
f(A1, . . . , An)σ = f(A1 σ, . . . , An σ)

(where f ∈ Σf
n, A1, . . . , An ∈ wfι(V))

On formulae

P (A1, . . . , An)σ = P (A1 σ, . . . , An σ)

(where P ∈ Σp
n and A1, . . . , An ∈ wfι(V,Σ))

⊥σ = ⊥
(¬A)σ = ¬(Aσ)

(A ∧B)σ = Aσ ∧B σ

...

(∀X.A)σ =

{
∀X. (Aσ) X ̸∈ {free(B) |B ∈ σ (V)}
∀X ′. ((A [X ′/X])σ) otherwise

(where X ′ is a fresh variable)

4.2.1 First-Order Natural Deduction

We extend propositional natural deduction with the rules
shown in Figure 5.

4.2.2 Free Variable Tableau

This tableau calculus extends the propositional tableau
with the rules shown in Figure 6.

(∀X.A)
⊤

Y fresh

(A [Y/X])
⊤

(∀X.A)⊥ {X1, . . . , Xk} = free(∀X.A) f ∈ Σsk
k new

(A [f(X1, . . . , Xk)/X])⊥

(∃X.A)⊤ {X1, . . . , Xk} = free(∃X.A) f ∈ Σsk
k new

(A [f(X1, . . . , Xk)/X])⊤

(∃X.A)
⊥

Y fresh

(A [Y/X])
⊥

Figure 6: Additional Rules of the Free Variable Tableau

4.2.3 First-Order Resolution

{∀X.A ∨ C} Z ̸∈ (free(A) ∪ free(C))

{(A [Z/X]) ∨ C}

{∃X.A ∨ C} {X1, . . . , Xk} = free(∃X.A) f ∈ Σsk
k

{(A [f(X1, . . . , Xk)/X]) ∨ C}

Figure 7: First-Order CNF-Calculus

4.3 Knowledge Representation

4.3.1 Semantic Networks

Def. A semantic network is a directed graph where
nodes represent objects and concepts
edges represent relations between nodes

4.3.2 ALC
4.4 Planning

References

[1] Gerhard Gentzen. “Untersuchungen über das logische
Schließen I”. In: Mathematische Zeitschrift 39 (1935),
pp. 176–210.

[2] Stuart Russell and Peter Norvig. Artificial Intelligence,
Global Edition A Modern Approach. Pearson Deutsch-
land, 2021, p. 1168. isbn: 9781292401133. url: https://
elibrary.pearson.de/book/99.150005/9781292401171.

$Id: symbolic-ai.tex,v 1.28 2025/03/12 14:14:07 oc45ujef Exp $

https://elibrary.pearson.de/book/99.150005/9781292401171
https://elibrary.pearson.de/book/99.150005/9781292401171

Γ ⊢ A [C/X] C ̸∈ free(Γ)
∀I

Γ ⊢ ∀X.A

Γ ⊢ ∀X.A ∀E
Γ ⊢ A [B/X]

Γ ⊢ A [E/X]
∃I

Γ ⊢ ∃X.A

Γ ⊢ ∃X.A Γ, (A [c/X]) ⊢ C c ∈ Σsk
0 new

∃E
Γ ⊢ C

Figure 5: Additional Rules of FO Natural Deduction

	Mathematical Prolegomena
	Set Theory
	Relations and Functions
	Examples: Algebraic Structures

	Computability Theory

	Rational Agents
	Agent Types

	Solving Problems by Searching
	Adversarial Search
	Constraint Satisfaction
	Constraint Propagation

	Logic
	Propositional Logic
	Propositional Natural Deduction
	Propositional Tableau
	Resolution

	First-Order Logic
	First-Order Natural Deduction
	Free Variable Tableau
	First-Order Resolution

	Knowledge Representation
	Semantic Networks
	ALC

	Planning

