
Results of the AI1 Kalah Tournament

ABSTRACT

This report contains the results of the closed AI1 Kalah tournament. All teams that man-
age to pass the first stage will receive bonus points. The top ten teams receive additional bonus
points. The tournament consists of multiple stages, where agents are disqualified if they don’t
perform well enough.

1. Stage "Sanity Test"

All agents are made to compete once against a random bot on a (6, 6) board. As the agent is allowed to make the
first move, we know that they must be able to win the game, since this configuration of Kalah is solved. To pass this
stage, one has to definitively win against the random bot, otherwise one is disqualified immediately.

1.1. Scores

Agent Win Loss Draw Score
Agent1337 1 2 0 2
sigmazero 2 1 0 4
EvaLuAtor 2 1 0 4
SimpleAlphaBeta 3 0 0 6
KGBAgent 3 0 0 6
262244 3 0 0 6
262449 3 0 0 6
Kalah Knight               3           0            0             6
MNI 3 0 0 6
watchthepartydie 3 0 0 6
258406 3 0 0 6

1.2. Game Log

Nr.          South Agent          North Agent      South      North      Diff.
1 SimpleAlphaBeta Random 56 16 40
2 262244 Random 55 17 38
3      Kalah Knight            Random               59            13          46
4 EvaLuAtor Random 31 31 0
5 MNI Random 45 27 18
6 262244 Random 53 19 34
7 watchthepartydie Random 45 27 18
8 watchthepartydie Random 44 28 16
9 MNI Random 51 21 30

10 watchthepartydie Random 48 24 24
11 Agent1337 Random 4 3 1
12 EvaLuAtor Random 40 32 8
13 KGBAgent Random 37 35 2
14 262244 Random 43 29 14
15 MNI Random 46 26 20
16 258406 Random 55 17 38
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17 EvaLuAtor Random 38 34 4
18 Agent1337 Random 53 19 34
19      Kalah Knight            Random               49            23          26
20 sigmazero Random 33 39 -6
21 262449 Random 52 20 32
22 262449 Random 50 22 28
23 258406 Random 39 33 6
24 Agent1337 Random 5 4 1
25 262449 Random 50 22 28
26 SimpleAlphaBeta Random 52 20 32
27 SimpleAlphaBeta Random 54 18 36
28 sigmazero Random 45 27 18
29 KGBAgent Random 41 31 10
30 258406 Random 38 34 4
31      Kalah Knight            Random               46            26          20
32 sigmazero Random 45 27 18
33 KGBAgent Random 37 35 2

These agents were disqualified for failing to meet the necessary criteria for proceeding to the next round:

• Agent1337

2. Stage "Round Robin (6, 6)"

All agents play against all other agents, on both sides of a Kalah board. If one agent definitively manages to beat an-
other agent, they are awarded two points, and the opponent is given no points. For a draw, both agents are granted a
single point. The final score of this round is calculated by summing up the points for each game. Agents that suf-
fered more losses than wins are disqualifed.

2.1. Scores

Agent Win Loss Draw Score
sigmazero 0 16 2 2
KGBAgent 1 16 1 3
MNI 3 13 2 8
EvaLuAtor 7 10 1 15
262449 9 9 0 18
262244 12 6 0 24
Kalah Knight              12           4           1            25
watchthepartydie 13 5 0 26
258406 13 4 0 26
SimpleAlphaBeta 13 3 1 27

2.2. Game Log

Nr.          South Agent              North Agent          South      North      Diff.
1 watchthepartydie KGBAgent 56 16 40
2 KGBAgent                 Kalah Knight               17            55          -38
3 KGBAgent watchthepartydie 20 52 -32
4 sigmazero watchthepartydie 22 50 -28
5 sigmazero 262244 28 44 -16
6 watchthepartydie 262244 44 28 16
7 MNI 262449 28 44 -16
8 262244 watchthepartydie 39 33 6
9      watchthepartydie      Kalah Knight               31            28             3

10 KGBAgent MNI 23 49 -26
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11 262244 sigmazero 53 19 34
12      Kalah Knight            262244                           35            37            -2
13 258406 SimpleAlphaBeta 23 49 -26
14 262244 262449 40 32 8
15      Kalah Knight            EvaLuAtor 44 28 16
16 262449 sigmazero 50 22 28
17 258406 262449 37 35 2
18 258406 MNI 52 20 32
19 sigmazero 258406 28 44 -16
20 sigmazero MNI 35 37 -2
21 sigmazero                  Kalah Knight               29            43          -14
22 KGBAgent EvaLuAtor 21 51 -30
23 262449 watchthepartydie 28 44 -16
24 MNI 262244 16 56 -40
25 EvaLuAtor watchthepartydie 26 46 -20
26 KGBAgent sigmazero 41 31 10
27      262449                        Kalah Knight               37            35             2
28 SimpleAlphaBeta sigmazero 56 16 40
29 262449 262244 38 34 4
30 EvaLuAtor 262244 19 53 -34
31 MNI sigmazero 36 36 0
32 MNI watchthepartydie 14 58 -44
33      Kalah Knight            sigmazero 55 17 38
34      Kalah Knight            258406                           33            29             4
35 EvaLuAtor 258406 35 37 -2
36      Kalah Knight            MNI                              61            11           50
37 262244 258406 32 40 -8
38 EvaLuAtor KGBAgent 53 19 34
39      258406                        Kalah Knight               29            43          -14
40 SimpleAlphaBeta 262449 41 31 10
41 SimpleAlphaBeta KGBAgent 44 28 16
42 watchthepartydie sigmazero 45 27 18
43 EvaLuAtor SimpleAlphaBeta 29 43 -14
44 262244 EvaLuAtor 39 33 6
45 258406 262244 51 21 30
46 262244 MNI 41 31 10
47 SimpleAlphaBeta 258406 39 33 6
48      Kalah Knight            SimpleAlphaBeta         36            36             0
49 258406 KGBAgent 45 27 18
50      Kalah Knight            watchthepartydie         35            37            -2
51      Kalah Knight            262449                           51            21           30
52 262449 EvaLuAtor 26 46 -20
53      262244                        Kalah Knight               35            37            -2
54 SimpleAlphaBeta MNI 49 23 26
55 258406 watchthepartydie 18 54 -36
56 KGBAgent SimpleAlphaBeta 17 55 -38
57 262449 MNI 46 26 20
58 watchthepartydie SimpleAlphaBeta 27 45 -18
59 EvaLuAtor sigmazero 47 25 22
60      Kalah Knight            KGBAgent 50 22 28
61 watchthepartydie EvaLuAtor 57 15 42
62 MNI EvaLuAtor 36 36 0
63 262244 SimpleAlphaBeta 33 39 -6
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64 262449 KGBAgent 62 10 52
65 MNI SimpleAlphaBeta 23 49 -26
66 262449 SimpleAlphaBeta 44 28 16
67 258406 sigmazero 55 17 38
68 KGBAgent 262244 23 49 -26
69 watchthepartydie 262449 49 23 26
70      SimpleAlphaBeta      Kalah Knight               27            45          -18
71 KGBAgent 258406 12 60 -48
72 watchthepartydie 258406 35 37 -2
73 EvaLuAtor                Kalah Knight               24            48          -24
74 MNI 258406 24 48 -24
75 sigmazero 262449 21 51 -30
76 EvaLuAtor 262449 48 24 24
77 SimpleAlphaBeta 262244 27 45 -18
78 SimpleAlphaBeta EvaLuAtor 40 32 8
79 sigmazero SimpleAlphaBeta 16 56 -40
80 EvaLuAtor MNI 52 20 32
81 258406 EvaLuAtor 37 35 2
82 262244 KGBAgent 44 28 16
83 watchthepartydie MNI 48 24 24
84 KGBAgent 262449 25 47 -22
85 SimpleAlphaBeta watchthepartydie 33 27 6
86 262449 258406 34 38 -4
87      MNI                           Kalah Knight               30            42          -12
88 MNI KGBAgent 53 19 34
89 sigmazero EvaLuAtor 33 39 -6
90 sigmazero KGBAgent 36 36 0

These agents were disqualified for failing to meet the necessary criteria for proceeding to the next round:

• sigmazero

• EvaLuAtor

• KGBAgent

• MNI

3. Stage "Round Robin (8, 8)"

All agents play against all other agents, on both sides of a Kalah board. If one agent definitively manages to beat an-
other agent, they are awarded two points, and the opponent is given no points. For a draw, both agents are granted a
single point. The final score of this round is calculated by summing up the points for each game. Agents that suf-
fered more losses than wins are disqualifed.

3.1. Scores

Agent Win Loss Draw Score
SimpleAlphaBeta 1 9 0 2
258406 1 8 0 2
Kalah Knight               4           6            0              8
262449 5 4 0 10
watchthepartydie 7 2 0 14
262244 9 1 0 18

3.2. Game Log

Nr.          South Agent              North Agent          South      North      Diff.
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1      Kalah Knight            SimpleAlphaBeta         86            42           44
2      SimpleAlphaBeta      Kalah Knight               59            69          -10
3 SimpleAlphaBeta 262244 44 84 -40
4      262244                        Kalah Knight               68            60             8
5 262244 262449 75 53 22
6 258406 262244 52 76 -24
7 262449 262244 62 66 -4
8 258406 watchthepartydie 61 67 -6
9 SimpleAlphaBeta 258406 69 59 10

10 watchthepartydie 262244 68 60 8
11      Kalah Knight            262244                           62            66            -4
12 SimpleAlphaBeta watchthepartydie 7 4 3
13 258406 262449 60 68 -8
14 258406 SimpleAlphaBeta 24 13 11
15      258406                        Kalah Knight               73            55           18
16 262244 watchthepartydie 86 42 44
17 262244 SimpleAlphaBeta 85 43 42
18      Kalah Knight            262449                           85            43           42
19 watchthepartydie 258406 73 55 18
20 262449 SimpleAlphaBeta 78 50 28
21 watchthepartydie 262449 62 47 15
22 watchthepartydie SimpleAlphaBeta 70 58 12
23 262449 258406 70 58 12
24 262244 258406 80 48 32
25      Kalah Knight            258406                           67            61             6
26      Kalah Knight            watchthepartydie         60            68            -8
27      262449                        Kalah Knight               65            63             2
28 SimpleAlphaBeta 262449 57 71 -14
29      watchthepartydie      Kalah Knight               71            57           14
30 262449 watchthepartydie 51 77 -26

These agents were disqualified for failing to meet the necessary criteria for proceeding to the next round:

• Kalah Knight

• 258406

• SimpleAlphaBeta

4. Stage "Round Robin (10, 10)"

All agents play against all other agents, on both sides of a Kalah board. If one agent definitively manages to beat an-
other agent, they are awarded two points, and the opponent is given no points. For a draw, both agents are granted a
single point. The final score of this round is calculated by summing up the points for each game. Agents that suf-
fered more losses than wins are disqualifed.

4.1. Scores

Agent Win Loss Draw Score
262449 0 4 0 0
262244 3 1 0 6
watchthepartydie 3 1 0 6

4.2. Game Log

Nr.          South Agent              North Agent          South      North      Diff.
1 262244 watchthepartydie 102 98 4
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2 262449 262244 84 116 -32
3 262449 watchthepartydie 94 106 -12
4 262244 262449 108 92 16
5 watchthepartydie 262244 103 97 6
6 watchthepartydie 262449 101 99 2

These agents were disqualified for failing to meet the necessary criteria for proceeding to the next round:

• 262449

5. Stage "Round Robin (12, 12)"

All agents play against all other agents, on both sides of a Kalah board. If one agent definitively manages to beat an-
other agent, they are awarded two points, and the opponent is given no points. For a draw, both agents are granted a
single point. The final score of this round is calculated by summing up the points for each game. Agents that suf-
fered more losses than wins are disqualifed.

5.1. Scores

Agent Win Loss Draw Score
watchthepartydie 0 2 0 0
262244 2 0 0 4

5.2. Game Log

Nr.          South Agent              North Agent          South      North      Diff.
1 262244 watchthepartydie 159 129 30
2 watchthepartydie 262244 125 163 -38

These agents were disqualified for failing to meet the necessary criteria for proceeding to the next round:

• watchthepartydie

6. Final score

The top ten agents are as follows:

1 262244 (Score: 58)

2 watchthepartydie (Score: 52)

3 Kalah Knight (Score: 39)

4 SimpleAlphaBeta (Score: 35)

5 262449 (Score: 34)

5 258406 (Score: 34)

6 EvaLuAtor (Score: 19)

7 MNI (Score: 14)

8 KGBAgent (Score: 9)

9 sigmazero (Score: 6)

Congratulations to all participating teams!

The remaining scores are:

10 Agent1337 (Score: 2)
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7. About the Agents

This section contains the abridged, partly spellchecked, sometimes translated and slightly editorialized (where
needed) contents of the ABOUT file, if it was submitted.

7.1. sigmazero (262621)

Idea

The idea was MCTS with AlphaZero

Implementation

The agent is implemented in Python. The goal of this work consisted of creating an agent that could play the game
of Kalah as strongly as possible. The most naive method (though very effective) method is to implement the min-
max algorithm, as was described in the lecture.  There are limited opportunities for improvements there, however.

The easiest and most important improvement is to implement alpha-beta pruning, which entails an enormous
speedup (ca. *8). The second optimization is caching already expanded game states, which proved ineffective, how-
ever. We are left with two options:

1. Adjust the heuristic function

2. Implement move ordering to optimize alpha-beta pruning

(2.) can entail an enormous performance boost, since better moves are tried first, which reduces the size of the search
tree. We get a ca. *3 improvement.

Concerning (1.), one could try different mathematical functions, e.g. to prefer states with many seeds in the pits be-
fore one’s home, since they are not as easy to steal. Alternatively, one could prefer positions whithout big numbers
of seeds in one’s pits. All of those complex functions bear the risk of not being sensible on a high level of play.
They are also computationally expensive. The report for the Kalah Challenge 20221 mentions that teams played
around with different heuristic functions, which could only provide limited improvements. It also mentions that not
a single team implemented a different algorithm, like Monte Carlo Tree Search (MCTS). I want to change that with
this work.

Monte Carlo Tree Search

The MCTS algorithm is significantly more complex, but it offers more opportunities for optimization.

We started by trying to implement an ordinary MCTS algorithm. Contrary to minmax, the algorithm does not evalu-
ate states by a heuristic, but by contiunally expanding the game positions all the way to the end of the game. There
are two possibilities for improvement:

1. The choice of expanded nodes. We used the upper confidence bound for trees (UCT), because it is well-re-
searched and applicable to many MCTS use cases.

2. The choice of an effective policy in the rollout phase. The simplest variant of MCTS uses a random policy.
With that, a MacBook M1 is able to perform 40,000 iterations of MCTS in 5 seconds. Nethertheless, a min-
max algorithm with depth 2 beats MCTS with this policy easily.

Thereupon, we tried implementing a greedy algorithm as the policy, with a heuristic of

South - North                                                                                  

We reached ca. 8000 MCTS iterations, though this algorithm is still worse than minmax. The report mentioned that
a combined MCTS and minmax could give good results. We implemented an agent that switched from MCTS to
minmax after the number of available seeds dropped to a specific number (< 20).  This did not improve our results.

Therefore we made the decision to implemented the well-known AlphaZero algorithm for this game. There are open
source templates2 for other games, particulary Othello, where this algorithm delivers very good results. For this
project, we adjusted the template for the game of Kalah and we explored an architecture for the neural net. That was

1 Editor’s note: https://wwwcip.cs.fau.de/˜oc45ujef/ai/kalah22.pdf
2 https://github.com/suragnair/alpha-zero-general
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based exclusively on fully connected residual blocks, since seeds have little local, but rather global dependencies in
Kalah.

For effective training of the algorithm, we implemented parallel processing, although with errors. We did not have
access to the correct hardware. Training on the computers in the CIP-Pools produced errors and was strangely
slower than on a MacBook. The model was trained 40 times with different parameters (MCTS-simulations, arena-
compare(50-400), cpuct (1; 1.5), update-threshold (0.52-0.6), temp-threshold (15-35)), with neural net architectures
as well as parallel and linear computation.  The Fritz Cluster of the HPC at FAU was requested, but denied.

The parameters of the original paper for the game of Go and Othello were not used, since they would have required
a lot more resources. The game of Kalah is simpler in many ways, so simpler parameter constructions should be jus-
tified. In most cases the model improves initially, but then hits a plateau where it does not keep improving. Maybe
with more computational resources a better result would have been achievable, but the current model barely manages
to beat a random agent.

In total, we spent around 60-70 hours on this project. All to build an agent, that is significantly worse than the pro-
vided minmax algorithm. It is possible that bugs that hinder performance dramatically exist in the implementation,
or more training would have been necessary. Sadly the algorithm only works with a board size of 8.

7.2. SimpleAlphaBeta (257394)

Idea

I wanted to implement the Agent in a more performant language leading to this pure C++ implementation. I was
thinking about going for a Monte Carlo driven approach but decided that this would likely require a neural network
to function properly, which would require extensive self play, which i did not have the resources for. Instead I piv-
oted to a very basic MiniMax approach.

Implementation

I started up with a pure minimax limited to a certain search dept. Once this worked i wanted to make sure that the
agent does not waste any time it has untill the game is solved so i started working on the time component. The con-
troller now measures the latency using the initial "ok" message and keeps flags determening if the calculation should
be interrupted. This lead to a dynamic search dept that always uses the entire available search time (if board not
solved). The next step would be implementing alpha beta pruning for more efficient search using a basic store dif-
ference eval function, which i later adapted a little to also include the difference of stones in pits. The next step was
adding move ordering and a quiescenceSearch.

The following was implemented but did not work as intended:

• completely reworked the board class to now offer undo unfunctionality to prevent the countless board copys

• added bitmasks and highly optimized the get legal moves function in the board

• introduced a transposition table using zobristHashes in a static sized vector, this increased the search depth by
almost 5 steps

• I tried learning weights for a better eval function but this did not work, so i scrapped it.

Very early on my agents keep beating the ones provided on the training server consistently, so i switched to compar-
ing them against each other. Literal dozens of hours later i once again let one of now really advanced agents play on
the server and to my horror it performed worse than the rather simple one in the beginning. About a week later and
with the deadline approaching i could not figure out what has happened and why the agents got worse all of a sud-
den, so i gave up, scrapped everything and came back to on of the earlier iterations that i know worked against the
agents provided on the server. (honestly i lost track by now and i am not sure anymore)
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7.3. EvaLuAtor (257864)

Idea

The general approach was to create a game-winning agent with the least amount of time and effort possible â basi-
cally, a lazy implememtation that still somehow manages to win a few rounds.

Implementation

Our agent is implemented in Python using the provided template. We began by implementing the MinMax algorithm
with alpha-beta pruning and then made a few adjustments to the evaluation function to improve performance.

7.4. KGBAgent (261360)

Idea

Minmax agent with alpha-beta pruning and cache.

Implementation

The agent is written in Java.

7.5. (262244)

Idea

Our general approach was to implement a MinMax search with alpha-beta pruning and move ordering.

Implementation

The agent is written in Python using the provided template. First we implemented MinMax search with alpha-beta
pruning and move sorting. We then implemented a heuristic function (score-difference) that would evaluate the
board state. After a couple of runs on the server, we realized that the heuristic function was not enough to beat the
better agents (MinMax-6 and higher). Finally, by implementing a cache which stores the score value for each move
for a given board state from the previous depths, we were able to beat all the bot agents.

7.6. (262449)

Idea

Our general approach was to implement the alpha-beta-search algorithm by setting the beta and alpha values and
choosing the best move depending on whose turn it is.

Implementation

We began writing our agent by using the Python template which implements the MinMax algorithm as a reference.

7.7. Kalah Knight (262452)

Idea

Our idea was to implement aplha beta pruning search with evaluation function and ordering strategy that works best
in our experiments.
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0. Evaluation Function

• Basic -> Difference of score in our and opponents pits

• Basic with Capture -> we added bonus if there was a capture possible

• Basic with Capture v2 -> along with our bonus capture, we would penalize if our move would let other user
capture our seeds

• Basic with Capture v2 and total pit score -> same as above but this time we add difference of total seeds on
our side vs opponents side

• Basic with Capture v2, total pit score, potential move -> we count how many pits are non zero (leading to pos-
sibility of move) on both sides and take a difference

1. Alpha Beta Prune ordering

• with no ordering

• with ordering based on evaluation function, highest value first

• with random ordering

Alpha-Beta Pruning with basic evaluation function and random ordering performed best.

Implementation

We began with trying out the already exisisting code and found that it was performing very poor. So we changed the
agent code -> to incorporate better yeilds with depth of 2 to kgp.size and tweaked the evaluation function to con-
sider difference between the number of seeds between our and opponents pit. Surprisingly, that worked well and
was winning most of the matches it played except for full MiniMax agents like MiniMax-4. Our orignal idea was
to implement alpha-beta pruning with better(probably complex) evaluation function to beat other agents.

Althouth we use alpha-beta pruning, we found out that our agent was not exploring very deep depths. During the
midgame, it looks up to 8 moves ahead, and in the endgame, due to the fact that there are less possible moves, it can
look up to 18 moves ahead. To try to improve this, we tried increasing the recursion limit, which in python is 1000
by default. We performed some tests with recursion limit of 4000 and even 8000, but at the end after performing
some tests, we realized it didn’t make a big difference. To test this and to test the different evaluation functions, we
created multiple agents and let them play against each other. Namely:

Agent Name                  Evaluation Function            Recursion Limit                         Additional Info                   

Kalah Knight               Difference between scores                   1000               This is the base agent
Kalah Knight 1000      Difference between scores                   1000               This agent outperformed the others
Kalah Knight 4000      Difference between scores                   4000               This agent was eventually outperformed
MinMax De                 Complex evaluation function               1000               Performs well, but was outperformed

Additionally, we tried ordering the child nodes using the evaluation function, to achieve better pruning by alpha-
beta. However, this didn’t work as well as we expected, as the same depths were being explored, and there was not
gain in performance or efficiency at all. Quite the opposite, we found out that better results were obtained using ran-
dom ordering.

7.8. MNI (262499)

Implementation

The agent is written in Python.
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7.9. watchthepartydie (262606)

Idea

Our general approach was to use a minimax algorithm with alpha-beta pruning and move ordering.

Implementation

The agent is written in Python using the provided template. We began writing our agent by developing a standard
minimax algorithm. After that, we added alpha-beta pruning, move ordering, memoisation, and experimented with
different evaluation functions.

7.10. Agent1337 (262622)

Idea

Our general approach was to write a Minimax algorithm with Alpha-Beta pruning that priotizes moves based on po-
tential extra turns and capture opportunities.

Implementation

The agent is written in Python using the provided template. We began writing our agent by expanding the given
Minimax algorithm.

7.11. (258406)

Idea

Father forgive me for I have sinned. Instead of writing the agent in Haskell like the lord intended, I decided to
use C++ to get more comfortable with the language. The algorithm is minmax with iterative deepening search, al-
pha-beta pruning and move ordering.

Implementation

Honestly, I did not realize that there are prebuilt libraries for the game logic, so I implemented it from scratch. It
was a good exercise, but I really struggled to even get linked lists working (damned pointers!!11!). I used kgpc for
communication. The rest was straightforward:

1. Implement minmax

2. Add alpha-beta pruning

3. Add move ordering

4. Wonder why agent still loses to MinMax-2

5. Lose sanity

...

6. Regain sanity

7. Realize that the minmax algorithm has been flawed from the beginning, evaluations were used completely
wrong.

8. Fix Minmax

9. Realize that the evaluation function is also garbage and you should revert to the basics.

10. For most moves the agent reaches a depth of around 9 => happy.
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The evaluation function is a linear function that only considers seeds in the stores and on the field. For move order-
ing we use a different evaluation function, that evaluates moves in pretty much the same way, except that captures
are prioritized.

8. Wall of Shame

This section contains a list of teams and their sins (in no particular order and with wildly different severity).

Team Infraction

262622 We did not install numpy in our docker container
262499 We did not submit in the required format
262499 We did not submit an ABOUT file
262622      Our agent does not connect correctly
257864 We did not check the boxes in the ABOUT file
261360 We did not submit our source code initially
261360      The source code we submitted did not compile initially
261360 We used an outdated template
pkal           I do not understand POSIX shell expansion


