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e Extend A\— to first-order logic (resulting in AP)
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Extending \— with Dependent Types



Recall: The System \—

The syntax of A— consists of:

t,su=z | ANx:@)t]|ts (Terms)

o u=X]p—9 (Types)
=0 | (z:) (Contexts)
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Recall: The System \—

The syntax of A— consists of:

t,su=z | ANx:@)t]|ts (Terms)

o u=X]p—9 (Types)
=0 | (z:) (Contexts)

Judgements of the form I' ¢ : ¢ can be derived via:

—————— (40)
Nx:pkx:p

x:pkFt: 9y I't:p— I'kFs:p
'EXz:p)t:p— I'tts:vy
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What is a Dependent Type?

Definition
A dependent type is a type that depends on terms.

4/16



What is a Dependent Type?

Definition
A dependent type is a type that depends on terms.

Example
e The type VecN n of lists of natural numbers with length n.

e The type Fin n of numbers smaller than n.

(where n is a natural number)
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What is a Dependent Type?

Definition

A dependent type is a type that depends on terms.

Example
e The type VecN n of lists of natural numbers with length n.
e The type Fin n of numbers smaller than n.

(where n is a natural number)

Remark

VecN and Fin themselves are not types, but type-families (indexed over natural
numbers).

However, all of VecN 2, Fin 42, VecN 123 are types.
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The System \P

The syntax of AP consists of:
t,su=z | ANx:@)t]|ts (Terms)
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The System \P

The syntax of AP consists of:

t,su=z | ANx:@)t]|ts (Terms)
o, =X V()Y |pt (Types)
* | (z: @) (Kinds)

=0|T (UC o) | I (X : k) (Contexts)

Shorthands:
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The System \P

The syntax of AP consists of:

t,su=z | ANx:@)t]|ts (Terms)

p,h =X |V(z:0)|pt (Types)

ku=x|II(z: ).k (Kinds)
Fa=0|L(x:9)| (X :K) (Contexts)

Shorthands:
@ — 1 instead of V(z : )¢ if x & FV ()
@ = k instead of II(x : p).k if z & FV (k)
Judgements are of the form:
I'Ht:p (Typing) I'y:r (Kinding)
I'+ k  (Kind formation)
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The System \P

Typing rules:
I'Fyp:x
P (4w
x:pkx:p
z:pkFt:v ) I'Et:Yx:p)y Fl—s:<p<v)
I'EXz:p)t:V(z:p)y ' I'ts:ylr:= 4 ‘
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The System \P

Typing rules:
I'Fyp:x
——— (Axzy)
x:pkx:p
z:pkFt:v ) I'Et:Yx:p)y Fl—s:<p<v)
I'EXz:p)t:V(z:p)y ' I'ts:ylr:= 4 ‘
Kinding rules:
'tk (Az,)
%
I'X : kX :k ’
Lx:pkFv:x I'cyp: Iz : ).k I'tt:
p ) p: Mz : ) w(ne
I'ev(z:p)a):* I'opt:klz:=t
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The System \P

Kind formation rules:

'z:pkk
(Azy) ————— (r)
Ik x I'-I(z: @)k
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The System \P

Example
Let us derive

I'Esum4v:N

with

I' ={N: x,
VecN : N = «,
sum :VY(n:N).VeeNn — N,
4: N,
v : VecN 4}
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The System \P

Example
Let us derive

I'=V(n:N).Y(m:N).eqy (add n m) (add m n) : x
with

I' ={N: x,
add : N —- N — N,

eqy : N=N= x}
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The Curry-Howard Isomorphism

Let ' = Yp U X be a FO-signature. We define a context I's:
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e For every P/n € X'p we have (P:0="0) € I'y.
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The Curry-Howard Isomorphism

Let ) = Yp U Xy be a FO-signature. We define a context I'x:

e There is only one proper type: (0: %) € I'y.

e For every P/n € X'p we have (P:0="0) € I'y.

e For every f/n € Xt we have (f:0—="0) e I's.
Theorem
Let ¢ be a first-order formula consisting only of — and V. There exists a A\-term t
such that I's =t : ¢ iff ¢ is a theorem of intuitionistic FOL with signature X.

Remark (for further reading)
The Curry-Howard isomorphism for “full” FOL requires us to extend AP with the
following constructs:

e Product, sum and empty type (corresponding to A, V, 1)

e Dependent sum type (corresponding to existential quantification)
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Expressiveness of \P

Let us define a translation from AP to A\—:

Terms
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Expressiveness of \P

Let us define a translation from AP to A\—:

Terms
.=z
ts:=t1
Mz )t = Az

Types
X=X
pt:=7

1 P).t V(z: )= 9
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Expressiveness of \P

Let us define a translation from AP to A\—:

Terms
.=z
ts:=t1
Mz )t = Az

Types
X=X
pt:=7

1 P).t V(z: )= 9

Contexts
0:=0
I(z:p):=T,(z:p)

IX:k):=T
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Expressiveness of \P

Let us define a translation from AP to A\—:

Terms Types

T:=x X =
ts:=t%s pt:i=
AMz:p)t:=Az:p).t V(z: )=

Lemma
IfTCFt:@ (in\P) then T F%:% (in A—).

SRR

<

Contexts
0:=0
I(z:9):=T,(z:p)

I(X:k):=T
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Expressiveness of \P

Let us define a translation from AP to A\—:

Terms Types Contexts
Tri=x X = X @ = @
ts:=13 pt:=79 I(z:p):=T,(z:9)
AMz:p)t:=Az:p).t V(z:p)y =9 — ¢ I(X:k):=T

Lemma
IfTCFt:@ (in\P) then T F%:% (in A—).

Corollary

AP can express (i.e. assign a type to) exactly the same terms as A—.
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More Properties

Lemma

AP is strongly normalizing, i.e. there are no infinite reduction sequences.
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More Properties

Lemma

AP is strongly normalizing, i.e. there are no infinite reduction sequences.

Lemma

AP has the Church-Rosser property, i.e.

Corollary

For every term in AP there exists a unique normal form.
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Applications of dependent types

The Curry-Howard Isomorphism in Practice



(Un)Safe Programming

Consider the following Haskell code

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN
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(Un)Safe Programming

Consider the following Haskell code

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN

4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) =n
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(Un)Safe Programming

Consider the following Haskell code

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN

4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) =n
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(Un)Safe Programming

Consider the following Haskell code:

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN

4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) =n

This could benefit from dependent types!
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Safe Programming

In Agda this can be expressed in a safe and correct way:

1 data VecN : N — * where
2 Nil : VecN zero

3 Cons : V(i : N) (n: N) (ns : VecN i) — VecN (succ i)
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Safe Programming

In Agda this can be expressed in a safe and correct way:

1 data VecN : N — * where
2 Nil : VecN zero
3 Cons : V (i : N) (n: N) (ns : VecN i) — VecN (succ i)

4 head : V (i : N) — VecN (succ i) — N
head (Cons i n ns) = n

ot
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Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere
2 zero : N
3 succ : N —+ N
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Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere

2 zero : N
3 succ : N —+ N
4 data _=_ : N - N — * yhere

refl : V{n : N} 2 n=n

ot
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Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere

2 zero : N
3 succ : N — N
4 data _=_ : N - N — * yhere

5 refl : V{n : N} 2 n=n

6 _+_ : N —-> N> N

7 zero +n=n
g (succ m) + n = succ (m + n)
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Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere

2 zero : N
3 succ : N — N
4 data _=_ : N - N — * yhere

5 refl : V{n : N} = n=n

6 _+_ : N —-> N> N

7 zero +n=n
g (succ m) + n = succ (m + n)

9 +-assoc : V (m : N) (mn : N) (o : N)

10 — (m+n) +0) = (m+ (n+ o))

11 +-assoc zero n o = refl

12 +-assoc (succ m) n o = cong succ (+-assoc m n o)
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Conclusion

In this talk we have:

e Seen how to extend A\— to a dependent type system AP, that corresponds to FOL,

e Studied properties of AP,

e Looked at applications of dependent types, by example of the dependently typed
programming language Agda.

Aw AC
-
A2 AP2 /
Aw T APw
7 7
A— AP
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