An Introduction to Dependent Type Theory

Leon Vatthauer

24.07.2025

Seminar Wissensrepräsentation und -verarbeitung

Roadmap

In this talk we will:

 \bullet Extend $\lambda{\rightarrow}$ to first-order logic (resulting in $\lambda{P})$

Roadmap

In this talk we will:

- ullet Extend λo to first-order logic (resulting in λP)
- ullet Discuss properties of λP

Roadmap

In this talk we will:

- Extend $\lambda \rightarrow$ to first-order logic (resulting in λP)
- Discuss properties of λP
- Look at applications of dependent type theory

Definition

The syntax of propositional logic is defined by:

$$\varphi, \psi ::= \bot \mid P \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \qquad P \in \mathcal{V}$$

where $\ensuremath{\mathcal{V}}$ is a set of propositional variables.

Definition

The syntax of propositional logic is defined by:

$$\varphi, \psi ::= \bot \mid P \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \qquad P \in \mathcal{V}$$

where $\mathcal V$ is a set of propositional variables.

Definition

First-order logic extends propositional logic with predicates and quantifiers:

$$\varphi, \psi ::= \bot \mid P(t_1, \dots, t_n) \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \rightarrow \psi \mid \forall x. \varphi \mid \exists x. \varphi$$

where t_1, \ldots, t_n are terms and P is a n-ary predicate.

Definition

The syntax of propositional logic is defined by:

$$\varphi, \psi ::= \bot \mid P \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \qquad P \in \mathcal{V}$$

where $\mathcal V$ is a set of propositional variables.

Definition

First-order logic extends propositional logic with predicates and quantifiers:

$$\varphi, \psi ::= \bot \mid P(t_1, \dots, t_n) \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \forall x. \varphi \mid \exists x. \varphi$$

where t_1, \ldots, t_n are terms and P is a n-ary predicate.

Recall: The System $\lambda \rightarrow$

The syntax of $\lambda \rightarrow$ consists of:

$$\begin{array}{ll} t,s ::= x \mid \lambda(x : \varphi).t \mid t \; s & \text{(Terms)} \\ \varphi,\psi ::= X \mid \varphi \to \psi & \text{(Types)} \\ \varGamma ::= \emptyset \mid \varGamma, (x : \varphi) & \text{(Contexts)} \end{array}$$

Recall: The System $\lambda \rightarrow$

The syntax of $\lambda \rightarrow$ consists of:

$$\begin{array}{ll} t,s ::= x \mid \lambda(x : \varphi).t \mid t \; s & \text{(Terms)} \\ \varphi, \psi ::= X \mid \varphi \to \psi & \text{(Types)} \\ \varGamma ::= \emptyset \mid \varGamma, (x : \varphi) & \text{(Contexts)} \end{array}$$

Judgements of the form $\Gamma \vdash t : \varphi$ can be derived via:

$$\overline{\Gamma, x : \varphi \vdash x : \varphi} \ (Ax)$$

$$\frac{\Gamma, x : \varphi \vdash t : \psi}{\Gamma \vdash \lambda(x : \varphi).t : \varphi \to \psi} \; (\to_i) \qquad \qquad \frac{\Gamma \vdash t : \varphi \to \psi \qquad \Gamma \vdash s : \varphi}{\Gamma \vdash t \; s : \psi} \; (\to_e)$$

What is a Dependent Type?

Definition

A **dependent type** is a type that depends on terms.

What is a Dependent Type?

Definition

A **dependent type** is a type that depends on terms.

Example

- \bullet The type $\mathbf{Vec}\mathbb{N}$ \boldsymbol{n} of lists of natural numbers with length $\boldsymbol{n}.$
- The type $\mathbf{Fin} \ \mathbf{n}$ of numbers smaller than \mathbf{n} .

(where **n** is a natural number)

What is a Dependent Type?

Definition

A **dependent type** is a type that depends on terms.

Example

- The type $Vec\mathbb{N}$ **n** of lists of natural numbers with length **n**.
- The type Fin n of numbers smaller than n.

(where \mathbf{n} is a natural number)

Remark

 $\mathbf{Vec}\mathbb{N}$ and **Fin** themselves are **not** types, but type-families (indexed over natural numbers).

However, all of $Vec\mathbb{N}$ 2, Fin 42, $Vec\mathbb{N}$ 123 are types.

The syntax of λP consists of:

$$t, s ::= x \mid \lambda(x : \varphi).t \mid t s$$
 (Terms)

The syntax of λP consists of:

$$\begin{array}{lll} t,s ::= x \mid \lambda(x:\varphi).t \mid t \; s & \text{(Terms)} \\ \varphi,\psi ::= X \mid \forall (x:\varphi).\psi \mid \varphi \; t & \text{(Types)} \end{array}$$

The syntax of λP consists of:

$$t, s ::= x \mid \lambda(x : \varphi).t \mid t s$$
 (Terms)

$$\varphi, \psi ::= X \mid \forall (x : \varphi).\psi \mid \varphi t$$
 (Types)

$$\varphi \to \psi$$
 instead of $\forall (x:\varphi).\psi$ if $x \not\in FV(\psi)$

The syntax of λP consists of:

$$t,s ::= x \mid \lambda(x : \varphi).t \mid t s$$
 (Terms)

$$\varphi, \psi ::= X \mid \forall (x : \varphi). \psi \mid \varphi t$$
 (Types)

$$\kappa ::= * \mid \Pi(x : \varphi).\kappa \tag{Kinds}$$

$$\varphi \to \psi$$
 instead of $\forall (x:\varphi).\psi$ if $x \notin FV(\psi)$

The syntax of λP consists of:

$$t,s ::= x \mid \lambda(x : \varphi).t \mid t s$$
 (Terms)

$$\varphi, \psi ::= X \mid \forall (x : \varphi). \psi \mid \varphi t$$
 (Types)

$$\kappa ::= * \mid \Pi(x : \varphi).\kappa \tag{Kinds}$$

$$\varphi \to \psi$$
 instead of $\forall (x : \varphi).\psi$ if $x \notin FV(\psi)$

$$\varphi \Rightarrow \kappa$$
 instead of $\Pi(x:\varphi).\kappa$ if $x \not\in FV(\kappa)$

The syntax of λP consists of:

$$\begin{array}{lll} t,s ::= x \mid \lambda(x : \varphi).t \mid t \; s & \text{(Terms)} \\ \varphi, \psi ::= X \mid \forall (x : \varphi).\psi \mid \varphi \; t & \text{(Types)} \\ \kappa ::= * \mid \Pi(x : \varphi).\kappa & \text{(Kinds)} \\ \Gamma ::= \emptyset \mid \Gamma, (x : \varphi) \mid \Gamma, (X : \kappa) & \text{(Contexts)} \end{array}$$

$$\varphi \to \psi \text{ instead of } \forall (x:\varphi).\psi \text{ if } x \not\in FV(\psi)$$

$$\varphi \Rightarrow \kappa \text{ instead of } \Pi(x:\varphi).\kappa \text{ if } x \not\in FV(\kappa)$$

The syntax of λP consists of:

$$\begin{array}{lll} t,s ::= x \mid \lambda(x : \varphi).t \mid t \; s & \text{(Terms)} \\ \varphi, \psi ::= X \mid \forall (x : \varphi).\psi \mid \varphi \; t & \text{(Types)} \\ \kappa ::= * \mid \Pi(x : \varphi).\kappa & \text{(Kinds)} \\ \Gamma ::= \emptyset \mid \Gamma, (x : \varphi) \mid \Gamma, (X : \kappa) & \text{(Contexts)} \end{array}$$

Shorthands:

$$\varphi \to \psi \text{ instead of } \forall (x:\varphi).\psi \text{ if } x \not\in FV(\psi)$$

$$\varphi \Rightarrow \kappa \text{ instead of } \Pi(x:\varphi).\kappa \text{ if } x \not\in FV(\kappa)$$

Judgements are of the form:

$$\varGamma \vdash t : \varphi \quad \text{(Typing)} \qquad \qquad \varGamma \vdash \varphi : \kappa \quad \text{(Kinding)}$$

$$\varGamma \vdash \kappa \quad \text{(Kind formation)}$$

Typing rules:

$$\frac{\Gamma \vdash \varphi : *}{\Gamma, x : \varphi \vdash x : \varphi} (Ax_t)$$

$$\frac{\Gamma, x : \varphi \vdash t : \psi}{\Gamma \vdash \lambda(x : \varphi).t : \forall (x : \varphi).\psi} \ (\forall_i) \qquad \qquad \frac{\Gamma \vdash t : \forall (x : \varphi).\psi \qquad \Gamma \vdash s : \varphi}{\Gamma \vdash t \; s : \psi[x := s]} \ (\forall_e)$$

Typing rules:

$$\frac{\Gamma \vdash \varphi : *}{\Gamma, x : \varphi \vdash x : \varphi} (Ax_t)$$

$$\frac{\Gamma, x : \varphi \vdash t : \psi}{\Gamma \vdash \lambda(x : \varphi).t : \forall (x : \varphi).\psi} \; (\forall_i) \qquad \qquad \frac{\Gamma \vdash t : \forall (x : \varphi).\psi \qquad \Gamma \vdash s : \varphi}{\Gamma \vdash t \; s : \psi[x := s]} \; (\forall_e)$$

Kinding rules:

$$\frac{\Gamma \vdash \kappa}{\Gamma, X : \kappa \vdash X : \kappa} (Ax_{\varphi})$$

$$\frac{\Gamma, x : \varphi \vdash \psi : \star}{\Gamma \vdash \forall (x : \varphi).\psi : \star} (\Pi_i) \qquad \frac{\Gamma \vdash \varphi : (\Pi x : \psi).\kappa \qquad \Gamma \vdash t : \psi}{\Gamma \vdash \varphi \ t : \kappa[x := t]} (\Pi_e)$$

Kind formation rules:

$$\frac{\Gamma, x : \varphi \vdash \kappa}{\Gamma \vdash \pi} (Ax_{\kappa}) \qquad \frac{\Gamma, x : \varphi \vdash \kappa}{\Gamma \vdash \Pi(x : \varphi) \cdot \kappa} (\kappa_{i})$$

Example

Let us derive

$$\Gamma \vdash sum \ 4 \ v : \mathbb{N}$$

with

$$\begin{split} \varGamma &= \{ \mathbb{N} : \star, \\ Vec \mathbb{N} : \mathbb{N} \Rightarrow \star, \\ sum : \forall (n : \mathbb{N}). \textit{Vec} \mathbb{N} \; n \rightarrow \mathbb{N}, \\ 4 : \mathbb{N}, \\ v : \textit{Vec} \mathbb{N} \; 4 \} \end{split}$$

Example

Let us derive

$$\Gamma \vdash \forall (n : \mathbb{N}). \forall (m : \mathbb{N}). eq_{\mathbb{N}} (add \ n \ m) (add \ m \ n) : \star$$

with

$$\Gamma = \{ \mathbb{N} : \star,$$

$$add : \mathbb{N} \to \mathbb{N} \to \mathbb{N},$$

$$eq_{\mathbb{N}} : \mathbb{N} \Rightarrow \mathbb{N} \Rightarrow \star \}$$

Let $\Sigma = \Sigma_P \cup \Sigma_f$ be a FO-signature. We define a context Γ_Σ :

Let $\Sigma = \Sigma_P \cup \Sigma_f$ be a FO-signature. We define a context Γ_{Σ} :

• There is only one proper type: $(0:\star) \in \Gamma_{\Sigma}$.

Let $\Sigma = \Sigma_P \cup \Sigma_f$ be a FO-signature. We define a context Γ_Σ :

- There is only one proper type: $(0:\star) \in \Gamma_{\Sigma}$.
- For every $P/n \in \Sigma_P$ we have $(P: 0 \Rightarrow^n 0) \in \Gamma_{\Sigma}$.

Let $\Sigma = \Sigma_P \cup \Sigma_f$ be a FO-signature. We define a context Γ_{Σ} :

- There is only one proper type: $(0:\star) \in \Gamma_{\Sigma}$.
- For every $P/n \in \Sigma_P$ we have $(P:0 \Rightarrow^n 0) \in \Gamma_{\Sigma}$.
- For every $f/n \in \Sigma_f$ we have $(f: 0 \to^n 0) \in \Gamma_{\Sigma}$.

Let $\Sigma = \Sigma_P \cup \Sigma_f$ be a FO-signature. We define a context Γ_{Σ} :

- There is only one proper type: $(0:\star) \in \Gamma_{\Sigma}$.
- For every $P/n \in \Sigma_P$ we have $(P: 0 \Rightarrow^n 0) \in \Gamma_{\Sigma}$.
- For every $f/n \in \Sigma_f$ we have $(f: 0 \to^n 0) \in \Gamma_{\Sigma}$.

Theorem

Let φ be a first-order formula consisting only of \to and \forall . There exists a λ -term t such that $\Gamma_{\Sigma} \vdash t : \varphi$ iff φ is a theorem of intuitionistic FOL with signature Σ .

Let $\Sigma = \Sigma_P \cup \Sigma_f$ be a FO-signature. We define a context Γ_{Σ} :

- There is only one proper type: $(0:\star) \in \Gamma_{\Sigma}$.
- For every $P/n \in \Sigma_P$ we have $(P: 0 \Rightarrow^n 0) \in \Gamma_{\Sigma}$.
- For every $f/n \in \Sigma_f$ we have $(f: 0 \to^n 0) \in \Gamma_{\Sigma}$.

Theorem

Let φ be a first-order formula consisting only of \to and \forall . There exists a λ -term t such that $\Gamma_{\Sigma} \vdash t : \varphi$ iff φ is a theorem of intuitionistic FOL with signature Σ .

Remark (for further reading)

The Curry-Howard isomorphism for "full" FOL requires us to extend λP with the following constructs:

- Product, sum and empty type (corresponding to \wedge, \vee, \perp)
- Dependent sum type (corresponding to existential quantification)

Expressiveness of λP

Let us define a translation from λP to $\lambda \rightarrow$:

Terms

$$\begin{split} \overline{x} &:= x \\ \overline{t \, s} &:= \overline{t} \, \overline{s} \\ \overline{\lambda(x : \varphi).t} &:= \lambda(x : \overline{\varphi}).\overline{t} \end{split}$$

Let us define a translation from λP to $\lambda \rightarrow$:

Terms	Types
$\overline{x} := x$	$\overline{X} := X$
$\overline{t} \ s := \overline{t} \ \overline{s}$	$\overline{\varphi \ t} := \overline{\varphi}$
$\overline{\lambda(x:\varphi).t} := \lambda(x:\overline{\varphi}).\overline{t}$	$\overline{\forall (x:\varphi).\psi} := \overline{\varphi} \to \overline{\psi}$

Let us define a translation from λP to $\lambda \rightarrow$:

Terms	Types	Contexts
$\overline{x} := x$	$\overline{X} := X$	$\overline{\emptyset} := \emptyset$
$\overline{ts}:=\overline{t}\overline{s}$	$\overline{\varphi} \ \overline{t} := \overline{\varphi}$	$\overline{\Gamma,(x:\varphi)}:=\overline{\Gamma},(x:\overline{\varphi})$
$\overline{\lambda(x:\varphi).t} := \lambda(x:\overline{\varphi}).\overline{t}$	$\overline{\forall (x:\varphi).\psi} := \overline{\varphi} \to \overline{\psi}$	$\overline{\Gamma,(X:\kappa)}:=\overline{\Gamma}$

Let us define a translation from λP to $\lambda \rightarrow$:

Terms	Types	Contexts
$\overline{x} := x$	$\overline{X} := X$	$\overline{\emptyset} := \emptyset$
$\overline{t}\overline{s} := \overline{t}\overline{s}$	$\overline{\varphi \ t} := \overline{\varphi}$	$\overline{\Gamma,(x:\varphi)}:=\overline{\Gamma},(x:\overline{\varphi})$
$\overline{\lambda(x:\varphi).t} := \lambda(x:\overline{\varphi}).\overline{t}$	$\overline{\forall (x:\varphi).\psi} := \overline{\varphi} \to \overline{\psi}$	$\overline{\Gamma,(X:\kappa)}:=\overline{\Gamma}$

Lemma

If $\Gamma \vdash t : \varphi$ (in λP) then $\overline{\Gamma} \vdash \overline{t} : \overline{\varphi}$ (in $\lambda \rightarrow$).

Let us define a translation from λP to $\lambda \rightarrow$:

Terms	Types	Contexts
$\overline{x} := x$	$\overline{X} := X$	$\overline{\emptyset} := \emptyset$
$\overline{t}\overline{s} := \overline{t}\overline{s}$	$\overline{\varphi \ t} := \overline{\varphi}$	$\overline{\Gamma,(x:\varphi)}:=\overline{\Gamma},(x:\overline{\varphi})$
$\overline{\lambda(x:\varphi).t} := \lambda(x:\overline{\varphi}).\overline{t}$	$\overline{\forall (x:\varphi).\psi}:=\overline{\varphi}\to\overline{\psi}$	$\overline{\Gamma,(X:\kappa)}:=\overline{\Gamma}$

Lemma

If $\Gamma \vdash t : \varphi$ (in λP) then $\overline{\Gamma} \vdash \overline{t} : \overline{\varphi}$ (in $\lambda \rightarrow$).

Corollary

 λP can express (i.e. assign a type to) **exactly** the same terms as $\lambda \rightarrow$.

More Properties

Lemma

 λP is strongly normalizing, i.e. there are no infinite reduction sequences.

More Properties

Lemma

 λP is strongly normalizing, i.e. there are no infinite reduction sequences.

Lemma

 λP has the Church-Rosser property, i.e.

More Properties

Lemma

 λP is strongly normalizing, i.e. there are no infinite reduction sequences.

Lemma

 λP has the Church-Rosser property, i.e.

Corollary

For every term in λP there exists a unique normal form.

Applications of dependent types

The Curry-Howard Isomorphism in Practice

Consider the following Haskell code:

```
data ListN where
Nil :: ListN
Cons :: Nat -> ListN -> ListN
```

Consider the following Haskell code:

```
1 data ListN where
2 Nil :: ListN
3 Cons :: Nat -> ListN -> ListN
4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) = n
```

Consider the following Haskell code:

```
1 data ListN where
2 Nil :: ListN
3 Cons :: Nat -> ListN -> ListN
4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) = n
```

Consider the following Haskell code:

```
1 data ListN where
2 Nil :: ListN
3 Cons :: Nat -> ListN -> ListN
4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) = n
```

This could benefit from dependent types!

Safe Programming

In Agda this can be expressed in a **safe** and **correct** way:

```
data VecN : \mathbb{N} \to * where Nil : VecN zero Cons : \forall (i : \mathbb{N}) (n : \mathbb{N}) (ns : VecN i) \to VecN (succ i)
```

Safe Programming

In Agda this can be expressed in a safe and correct way:

```
data VecN : \mathbb{N} \to * where

Nil : VecN zero

Cons : \forall (i : \mathbb{N}) (n : \mathbb{N}) (ns : VecN i) \to VecN (succ i)

head : \forall (i : \mathbb{N}) \to VecN (succ i) \to \mathbb{N}
head (Cons i n ns) = n
```

```
1 data \mathbb{N}: * where

2 zero : \mathbb{N}

3 succ : \mathbb{N} \to \mathbb{N}

4 data \_\equiv\_ : \mathbb{N} \to \mathbb{N} \to * where

5 refl : \forall \{n : \mathbb{N}\} \to n \equiv n

6 \_+\_ : \mathbb{N} \to \mathbb{N} \to \mathbb{N}

7 zero + n = n

8 (succ m) + n = succ (m + n)
```

```
data \mathbb{N} : * where
        zero: N
 2
    \mathtt{succ} : \mathbb{N} 	o \mathbb{N}
 4 data _{\equiv}: \mathbb{N} \to \mathbb{N} \to * where
   \mathtt{refl}: \ \forall \ \{\mathtt{n}: \ \mathbb{N}\} \ 	o \ \mathtt{n} \ \equiv \ \mathtt{n}
   _{-}+_{-}:\mathbb{N}\to\mathbb{N}\to\mathbb{N}
     zero + n = n
    (succ m) + n = succ (m + n)
     +-assoc : \forall (m : \mathbb{N}) (n : \mathbb{N}) (o : \mathbb{N})
                     \rightarrow ((m + n) + o) \equiv (m + (n + o))
10
     +-assoc zero n o = refl
11
     +-assoc (succ m) n o = cong succ (+-assoc m n o)
12
```


In this talk we have:

ullet Seen how to extend $\lambda{
ightarrow}$ to a dependent type system $\lambda{
m P}$, that corresponds to FOL,

In this talk we have:

- Seen how to extend $\lambda \rightarrow$ to a dependent type system λP , that corresponds to FOL,
- Studied properties of λP ,

In this talk we have:

- Seen how to extend $\lambda \rightarrow$ to a dependent type system λP , that corresponds to FOL,
- Studied properties of λP ,
- Looked at applications of dependent types, by example of the dependently typed programming language Agda.

In this talk we have:

- Seen how to extend $\lambda \rightarrow$ to a dependent type system λP , that corresponds to FOL,
- Studied properties of λP ,
- Looked at applications of dependent types, by example of the dependently typed programming language Agda.

