An Introduction to Dependent Type Theory

Leon Vatthauer
24.07.2025

Seminar Wissensreprasentation und -verarbeitung

Roadmap

In this talk we will:

e Extend A\— to first-order logic (resulting in AP)

1/16

In this talk we will:

e Extend A\— to first-order logic (resulting in AP)

e Discuss properties of AP

1/16

In this talk we will:

e Extend A\— to first-order logic (resulting in AP)
e Discuss properties of AP

e Look at applications of dependent type theory

1/16

Recall: Propositional Logic to FOL

Recall: Propositional Logic to FOL

Definition
The syntax of propositional logic is defined by:

o, pu=L[PloAY|pVi|p =1 PeVy

where V is a set of propositional variables.

2/16

Recall: Propositional Logic to FOL

Definition
The syntax of propositional logic is defined by:

o, pu=L|Plond|eVile—y PeV
where V is a set of propositional variables.

Definition

First-order logic extends propositional logic with predicates and quantifiers:

O, =L | P(t1,...,tn) | oAV | VY | o= | V.o | Tz

where t1,...,t, are terms and P is a n-ary predicate.

2/16

Recall: Propositional Logic to FOL

Definition
The syntax of propositional logic is defined by:

o, pu=L|Plond|eVile—y PeV
where V is a set of propositional variables.

Definition

First-order logic extends propositional logic with predicates and quantifiers:
o, =L | P(ty,..., t) | AV | VY| =Y | Va.p|Tz.p

where t1,...,t, are terms and P is a n-ary predicate.

2/16

Extending \— with Dependent Types

Recall: The System \—

The syntax of A— consists of:

t,su=z | ANx:@)t]|ts (Terms)

o u=X]p—9 (Types)
=0 | (z:) (Contexts)

3/16

Recall: The System \—

The syntax of A— consists of:

t,su=z | ANx:@)t]|ts (Terms)

o u=X]p—9 (Types)
=0 | (z:) (Contexts)

Judgements of the form I' ¢ : ¢ can be derived via:

—————— (40)
Nx:pkx:p

x:pkFt: 9y I't:p— I'kFs:p
'EXz:p)t:p— I'tts:vy

3/16

What is a Dependent Type?

Definition
A dependent type is a type that depends on terms.

4/16

What is a Dependent Type?

Definition
A dependent type is a type that depends on terms.

Example
e The type VecN n of lists of natural numbers with length n.

e The type Fin n of numbers smaller than n.

(where n is a natural number)

4/16

What is a Dependent Type?

Definition

A dependent type is a type that depends on terms.

Example
e The type VecN n of lists of natural numbers with length n.
e The type Fin n of numbers smaller than n.

(where n is a natural number)

Remark

VecN and Fin themselves are not types, but type-families (indexed over natural
numbers).

However, all of VecN 2, Fin 42, VecN 123 are types.

4/16

The System \P

The syntax of AP consists of:
t,su=z | ANx:@)t]|ts (Terms)

5/16

The System \P

The syntax of AP consists of:
t,su=z | ANx:@)t]|ts (Terms)
pp =X |V(z:p) |t (Types)

5/16

The System \P

The syntax of AP consists of:
t,su=z | ANx:@)t]|ts (Terms)
pp =X |V(z:p) |t (Types)

Shorthands:
@ — 1 instead of V(z :)¢ if x & FV ()

5/16

The System \P

The syntax of AP consists of:

t,su=z | ANx:@)t]|ts (Terms)
P =X [V(z:p)y ot (Types)
ku=x|II(z:).k (Kinds)

Shorthands:
@ — 1 instead of V(z :)¢ if x & FV ()

5/16

The System \P

The syntax of AP consists of:

t,su=z | ANx:@)t]|ts (Terms)
P =X [V(z:p)y ot (Types)
ku=x|II(z:).k (Kinds)

Shorthands:
@ — 1 instead of V(z :)¢ if x & FV ()
@ = k instead of II(x : p).k if z & FV (k)

5/16

The System \P

The syntax of AP consists of:

t,su=z | ANx:@)t]|ts (Terms)
o, =X V()Y |pt (Types)
* | (z: @) (Kinds)

=0|T (UC o) | I (X : k) (Contexts)

Shorthands:
@ — 1 instead of V(z :)¢ if x & FV ()
@ = k instead of II(x : p).k if z & FV (k)

5/16

The System \P

The syntax of AP consists of:

t,su=z | ANx:@)t]|ts (Terms)

p,h =X |V(z:0)|pt (Types)

ku=x|II(z:).k (Kinds)
Fa=0|L(x:9)| (X :K) (Contexts)

Shorthands:
@ — 1 instead of V(z :)¢ if x & FV ()
@ = k instead of II(x : p).k if z & FV (k)
Judgements are of the form:
I'Ht:p (Typing) I'y:r (Kinding)
I'+ k (Kind formation)

5/16

The System \P

Typing rules:
I'Fyp:x
P (4w
x:pkx:p
z:pkFt:v) I'Et:Yx:p)y Fl—s:<p<v)
I'EXz:p)t:V(z:p)y ' I'ts:ylr:= 4 ‘

6/16

The System \P

Typing rules:
I'Fyp:x
——— (Axzy)
x:pkx:p
z:pkFt:v) I'Et:Yx:p)y Fl—s:<p<v)
I'EXz:p)t:V(z:p)y ' I'ts:ylr:= 4 ‘
Kinding rules:
'tk (Az,)
%
I'X : kX :k ’
Lx:pkFv:x I'cyp: Iz :).k I'tt:
p) p: Mz :) w(ne
I'ev(z:p)a):* I'opt:klz:=t

6/16

The System \P

Kind formation rules:

'z:pkk
(Azy) ————— (r)
Ik x I'-I(z: @)k

7/16

The System \P

Example
Let us derive

I'Esum4v:N

with

I' ={N: x,
VecN : N = «,
sum :VY(n:N).VeeNn — N,
4: N,
v : VecN 4}

8/16

The System \P

Example
Let us derive

I'=V(n:N).Y(m:N).eqy (add n m) (add m n) : x
with

I' ={N: x,
add : N —- N — N,

eqy : N=N= x}

9/16

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism

Let ' = Yp U X be a FO-signature. We define a context I's:

10/16

The Curry-Howard Isomorphism

Let ' = Yp U X be a FO-signature. We define a context I's:

e There is only one proper type: (0: %) € I'y.

10/16

The Curry-Howard Isomorphism

Let ' = Yp U X be a FO-signature. We define a context I's:

e There is only one proper type: (0: %) € I'y.
e For every P/n € X'p we have (P:0="0) € I'y.

10/16

The Curry-Howard Isomorphism

Let ' = Yp U X be a FO-signature. We define a context I's:

e There is only one proper type: (0: %) € I'y.
e For every P/n € X'p we have (P:0="0) € I'y.
e For every f/n € Xt we have (f:0—="0) e I's.

10/16

The Curry-Howard Isomorphism

Let ' = Yp U X be a FO-signature. We define a context I's:

e There is only one proper type: (0: %) € I'y.

e For every P/n € X'p we have (P:0="0) € I'y.

e For every f/n € Xt we have (f:0—="0) e I's.
Theorem
Let ¢ be a first-order formula consisting only of — and V. There exists a A\-term t
such that I's =t : ¢ iff ¢ is a theorem of intuitionistic FOL with signature X.

10/16

The Curry-Howard Isomorphism

Let) = Yp U Xy be a FO-signature. We define a context I'x:

e There is only one proper type: (0: %) € I'y.

e For every P/n € X'p we have (P:0="0) € I'y.

e For every f/n € Xt we have (f:0—="0) e I's.
Theorem
Let ¢ be a first-order formula consisting only of — and V. There exists a A\-term t
such that I's =t : ¢ iff ¢ is a theorem of intuitionistic FOL with signature X.

Remark (for further reading)
The Curry-Howard isomorphism for “full” FOL requires us to extend AP with the
following constructs:

e Product, sum and empty type (corresponding to A, V, 1)

e Dependent sum type (corresponding to existential quantification)

10/16

Properties of \P

Expressiveness of \P

Let us define a translation from AP to A\—:

Terms

11/16

Expressiveness of \P

Let us define a translation from AP to A\—:

Terms
.=z
ts:=t1
Mz)t = Az

Types
X=X
pt:=7

1 P).t V(z:)= 9

11/16

Expressiveness of \P

Let us define a translation from AP to A\—:

Terms
.=z
ts:=t1
Mz)t = Az

Types
X=X
pt:=7

1 P).t V(z:)= 9

Contexts
0:=0
I(z:p):=T,(z:p)

IX:k):=T

11/16

Expressiveness of \P

Let us define a translation from AP to A\—:

Terms Types

T:=x X =
ts:=t%s pt:i=
AMz:p)t:=Az:p).t V(z:)=

Lemma
IfTCFt:@ (in\P) then T F%:% (in A—).

SRR

<

Contexts
0:=0
I(z:9):=T,(z:p)

I(X:k):=T

11/16

Expressiveness of \P

Let us define a translation from AP to A\—:

Terms Types Contexts
Tri=x X = X @ = @
ts:=13 pt:=79 I(z:p):=T,(z:9)
AMz:p)t:=Az:p).t V(z:p)y =9 — ¢ I(X:k):=T

Lemma
IfTCFt:@ (in\P) then T F%:% (in A—).

Corollary

AP can express (i.e. assign a type to) exactly the same terms as A—.

11/16

More Properties

Lemma

AP is strongly normalizing, i.e. there are no infinite reduction sequences.

12/16

More Properties

Lemma

AP is strongly normalizing, i.e. there are no infinite reduction sequences.

Lemma
AP has the Church-Rosser property, i.e.

12/16

More Properties

Lemma

AP is strongly normalizing, i.e. there are no infinite reduction sequences.

Lemma

AP has the Church-Rosser property, i.e.

Corollary

For every term in AP there exists a unique normal form.

12/16

Applications of dependent types

The Curry-Howard Isomorphism in Practice

(Un)Safe Programming

Consider the following Haskell code

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN

13/16

(Un)Safe Programming

Consider the following Haskell code

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN

4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) =n

13/16

(Un)Safe Programming

Consider the following Haskell code

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN

4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) =n

13/16

(Un)Safe Programming

Consider the following Haskell code:

1 data ListN where
2 Nil =:: ListN
3 Cons :: Nat -> ListN -> ListN

4 head :: ListN -> Nat
5 head Nil = undefined
6 head (Cons n ns) =n

This could benefit from dependent types!

13/16

Safe Programming

In Agda this can be expressed in a safe and correct way:

1 data VecN : N — * where
2 Nil : VecN zero

3 Cons : V(i : N) (n: N) (ns : VecN i) — VecN (succ i)

14/16

Safe Programming

In Agda this can be expressed in a safe and correct way:

1 data VecN : N — * where
2 Nil : VecN zero
3 Cons : V (i : N) (n: N) (ns : VecN i) — VecN (succ i)

4 head : V (i : N) — VecN (succ i) — N
head (Cons i n ns) = n

ot

14/16

Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere
2 zero : N
3 succ : N —+ N

15/16

Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere

2 zero : N
3 succ : N —+ N
4 data _=_ : N - N — * yhere

refl : V{n : N} 2 n=n

ot

15/16

Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere

2 zero : N
3 succ : N — N
4 data _=_ : N - N — * yhere

5 refl : V{n : N} 2 n=n

6 _+_ : N —-> N> N

7 zero +n=n
g (succ m) + n = succ (m + n)

15/16

Theorem Proving

We can use Agda to do first-order proofs (and more!):

1 data N : * yhere

2 zero : N
3 succ : N — N
4 data _=_ : N - N — * yhere

5 refl : V{n : N} = n=n

6 _+_ : N —-> N> N

7 zero +n=n
g (succ m) + n = succ (m + n)

9 +-assoc : V (m : N) (mn : N) (o : N)

10 — (m+n) +0) = (m+ (n+ o))

11 +-assoc zero n o = refl

12 +-assoc (succ m) n o = cong succ (+-assoc m n o)

15/16

Conclusion

Conclusion

In this talk we have:

e Seen how to extend A\— to a dependent type system AP, that corresponds to FOL,

16/16

Conclusion

In this talk we have:

e Seen how to extend A\— to a dependent type system AP, that corresponds to FOL,
e Studied properties of AP,

16/16

Conclusion

In this talk we have:

e Seen how to extend A\— to a dependent type system AP, that corresponds to FOL,
e Studied properties of AP,

e Looked at applications of dependent types, by example of the dependently typed
programming language Agda.

16/16

Conclusion

In this talk we have:

e Seen how to extend A\— to a dependent type system AP, that corresponds to FOL,

e Studied properties of AP,

e Looked at applications of dependent types, by example of the dependently typed
programming language Agda.

Aw AC
-
A2 AP2 /
Aw T APw
7 7
A— AP

16/16

	Roadmap
	Recall: Propositional Logic to FOL
	Extending STLC with Dependent Types
	The Curry-Howard Isomorphism
	Properties of λP
	Applications of dependent types The Curry-Howard Isomorphism in Practice
	(Un)Safe Programming
	Theorem Proving

	Conclusion

