FRIEDRICH-ALEXANDER-UNIVERSITAT
ERLANGEN-NURNBERG

7.CS

CHAIR FOR COMPUTER SCIENCE &
THEORETICAL COMPUTER SCIENCE

Implementing Categorical
Notions of Partiality and Delay in Agda

Bachelor Thesis in Computer Science (Consolidated Version)

Leon Vatthauer
Advisor:

Sergey Goncharov

Friedrich-Alexander-Universitat

HEAU Erlangen-Niirnberg

Erlangen, July 17, 2024

Abstract

Moggi famously showed how to use category theory (specifically monads) to model the semantics of effectful computations.
In this thesis we will examine how to model possibly non-terminating computations, which requires a monad supporting
some form of partiality. For that we will consider categorical properties that a monad that models partiality should satisfy
and then compare concrete monads in view of these properties.

Capretta’s delay monad is a typical example for a partiality monad, but it comes with a too intensional notion of built-in
equality. Since fixing this seems to be impossible without additional axioms, we will examine a novel approach of defining
a partiality monad that works in a general setting by making use of previous research on iteration theories and drawing on
the inherent connection between partiality and iteration.

Finally, we will show that in the category of setoids this partiality monad instantiates to a quotient of the delay monad,
yielding a concrete description of the partiality monad in this category.

Contents

1 Introduction

2 Preliminaries

2.1 Distributive Categories L e
2.2 F-Coalgebras e
2.3 Monadso e
2.4 Strong and Commutative Monads L L
2.5 Free Objects o e e
3 Implementing Category Theory in Agda
3.1 The Underlying Type Theory e e e e e
3.2 Setoid Enriched Categories L
3.3 The formalization L

4 Partiality Monads

4.1 Properties of Partiality Monads L

4.2 The Maybe Monad e e e

4.3 TheDelay Monad oL
5 lteration Algebras and Monads

5.1 Elgot Algebras e

5.2 The Initial Pre-Elgot Monad e
6 A Case Study on Setoids

6.1 Setoidsin Type Theory o L o e

6.2 Quotienting the Delay Monad
Bibliography

1 Introduction

Haskell is considered a purely functional programming
language, though the notion of purity referenced is an
informal one, not to be confused with the standard notion
of pure function, which describes functions that do not have
any side effects. Indeed, as a programming language that
offers general recursion, Haskell does at least have to include
partiality as a side effect. To illustrate this, consider the
following standard list reversal function

reverse :: [a] -> [a]
reverse 1 = revAcc 1 []
where
revAcc [] a=a

revAcc (x:xs) a = revAcc Xxs (x:a)

and regard the following definition of an infinite list

ones :: [Int]
ones = 1 : ones

Of course evaluation of the term reverse ones will never
terminate, hence it is clear that reverse is a partial func-
tion. Thus, in order to reason about Haskell programs, or
generally programs of any programming language offering
general recursion, one needs to be able to model partiality
as a side effect.

Generally for modelling programming languages there are
three prevailing methods. First is the operational approach
studied by Plotkin [3], where partial functions are used that
map programs to their resulting values, secondly there is
the denotational approach by Scott [6], where programming
languages are interpreted mathematically, by functions that
capture the “meaning” of programs. For this thesis we will
consider the third, categorical approach that has been intro-
duced by Moggi [5]. In the categorical approach programs
are interpreted in categories, where objects represent types
and monads are used to model side effects. The goal for
this thesis is thus to study monads which are suitable for
modeling partiality.

We use the dependently typed programming language
Agda [23] as a safe and type-checked environment for rea-
soning in category theory, therefore in Chapter 3 we start
out by quickly showcasing the Agda programming language
as well as the category theory library that we will be working
with. In Chapter 4 we will then consider various properties
that partiality monads should satisfy and inspect Capretta’s
delay monad [12], which has been introduced in type theory
as a coinductive data type and then studied as a monad in the
category of setoids. We will examine the delay monad in a
general categorical setting, where we prove strength and com-
mutativity of this monad. However, it is not a minimal par-
tiality monad, i.e. one that captures no other side effect be-
sides some form of non-termination, since the monad comes
with a too intensional notion of equality. In order to achieve
minimality one can consider the quotient of the delay monad

where a less intensional notion of equality is used. However,
it is believed to be impossible to show that the monadic struc-
ture is preserved under such a quotient. In [16] the axiom of
countable choice has been identified as a sufficient assump-
tion under which the monad structure is preserved.

In order to define a partiality monad using no such assump-
tions, we will draw on the inherent connection between
iteration and recursion in Chapter 5 to define a suitable par-
tiality monad, by relating to previous research on iteration
theories. This monad has first been introduced and studied
in [19] under weaker assumptions than we use, concretely
by weakening the notion of Elgot algebra to the notion of
uniform iteration algebra, which uses fewer axioms. During
mechanization of the results concerning this monad it turned
out that under the weaker assumptions, desirable properties
like commutativity seem not to be provable, resulting in
our adaptation of this monad. Lastly, in Chapter 6 we will
study this partiality monad in the category of setoids, where
notably the axiom of countable choice is provable. In this
category, the partiality monad turns out to be equivalent to
a certain quotient of the delay monad.

2 Preliminaries

We assume familiarity with basic categorical notions, in
particular: categories, functors, functor algebras and natural
transformations, as well as special objects like (co)products,
terminal and initial objects and special classes of mor-
phisms like isomorphisms (isos), epimorphisms (epis) and
monomorphisms (monos). In this chapter we will introduce
notation that will be used throughout the thesis and also
introduce some notions that are crucial to this thesis in more
detail. We write || for the objects of a category €, id y for
the identity morphism on X, (—)o(—) for the composition of
morphisms and € (X,Y) for the set of morphisms between X
and Y. We will also sometimes omit indices of the identity
and of natural transformations in favor of readability.

2.1 Distributive Categories

Let us first introduce notation for binary (co)products by
giving their usual diagrams:

A+ AxB—" B
\ iﬂ!(f,g) f
C

?

A——— A+B<— B

|
3![f.g]
f g
\ \L
C

We will furthermore overload this notation and write
fxg:=(fom,gomy) and f+g:=[i;of,iyog] on morphisms.
To avoid parentheses we will use the convention that
products bind stronger than coproducts.

We write 1 for the terminal object together with the unique
morphism ! : A — 1 and 0 for the initial object with the
unique morphism j: A —0.

Categories with finite products (i.e. binary products and
a terminal object) are also called Cartesian and categories
with finite coproducts (i.e. binary coproducts and an initial
object) are called coCartesian.

Definition 2.1 (Distributive Category ({7)). A Cartesian
and coCartesian category € is called distributive if the canon-
ical (left) distributivity morphism dst/~! is an isomorphism:

dstl™ b :=[idxiy,idX 5]

/\
XxY+XxZ Xx(Y+Z)

- o~

dstl

~

Remark 2.2. Definition 2.1 can equivalently be expressed
by requiring that the canonical right distributivity morphism
is an iso, giving these inverse morphisms:
dstr—ti=[iy xid iy xid)]
/—\
YXxX+ZxX Y+2Z)xX

-~

dstr

These two can be derived from each other by taking either
dstr:= (swap+ swap) odstlo swap

or
dstl:= (swap+ swap)odstroswap

where swap:={(my,m;): AX B— BXxA.

Proposition 2.3 (7). The distribution morphisms can
be viewed as natural transformations i.e. they satisfy the
following diagrams:

Xx(Y+z) — LU Ax(ByO)
J{dstl ldstl
XxY4XxzZ LIt A ByrAxC
(Y+Z)x X —Y9™ (BroyxA
dst{ ldm
YxX4+ZxX 2SI puAroxA

Proposition 2.4 (7).
the following properties:

The distribution morphisms satisfy

1. dstlo(idxiy) =i,

2. dstlo(id X i) =i,

3. [my,myledstl=m,

4. (my+mq)odstl=m,

5. dstloswap = (swap+ swap)odstr
6. dstro(iy xid)=1i,

7. dstro(iyxid)=iqy

8. (my+my)edstr=m,

9. [my,molodstr=m,

0. dstroswap=(swap+swap)odstl

Definition 2.5 (Exponential Object ({7)). Let € be a
Cartesian category and X,Y €|%’|. An object XY is called an
exponential object (of X and Y') if there exists an evaluation
morphism eval: XY xY — X and for any f: X xY — Z there
exists a morphism curry f : X — ZY that is unique with
respect to the following diagram:

%Y curry fxid XYXY

eval

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Distributive.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Distributive.Properties.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Distributive.Properties.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Object.Exponential.html

Proposition 2.6 (<7). FEwvery exponential object XY
satisfies the following properties:

1. The mapping curry : €(X x Y, Z) = €(X — ZY) is
injective,

2. curry(evalo(fxid))=f forany f: X xY = Z,

3

Leurry f o g = curry(f o (g x id)) for any
[+ XXxY—=Zg:A—>X.

A Cartesian closed category is a Cartesian category % that
also has an exponential object XY for any X,Y € |%|. The in-
ternal logic of Cartesian closed categories is the simply typed
A-calculus, which makes them a suitable environment for in-
terpreting programming languages. For the rest of this thesis
we will work in an ambient distributive category %, that
however need not be Cartesian closed as to be more general.

2.2 F-Coalgebras

Let F': 4 — % be an endofunctor. Recall that F-algebras are
tuples (X ,a: F X — X) consisting of an object of ¢’ and a mor-
phism out of the functor. Initial F-algebras have been studied
extensively as a means of modeling inductive data types to-
gether with induction and recursion principles [7]. For this
thesis we will be more interested in the dual concept namely
terminal coalgebras; let us formally introduce them now.

Definition 2.7 (F-Coalgebra ({/)). A tuple (X € |%],a:
X — FX) is called an F-coalgebra (hereafter referred to as
just coalgebra).

Definition 2.8 (Coalgebra Morphisms ({7)). Let
(X,a: X - FX) and (Y,8:Y — FY) be two coalge-
bras. A morphism between these coalgebras is a morphism
f:X =Y such that the following diagram commutes:

X —* S FX

! Ff

y — 5% L Fy

Coalgebras on a given functor together with their morphisms
form a category that we call Coalgs(F).

Proposition 2.9 (7). Coalgs(F) is a category.

The terminal object of Coalgs(F') is sometimes called final
coalgebra, we will however call it the terminal coalgebra
for consistency with initial F-algebras. Similarly to initial
F-algebras, the final coalgebra can be used for modeling the
semantics of coinductive data types where terminality of the
coalgebra yields corecursion as a definitional principle and
coinduction as a proof principle. Let us make the universal
property of terminal coalgebras concrete.

Definition 2.10 (Terminal Coalgebra ({7)). A coalgebra
(T)t:T— FT) is called a terminal coalgebra if for any other
coalgebra (X,a: X — FX) there exists a unique morphism
[a): X =T satisfying:

X —— FX

(o] Fla]

T —*' L FT
We use the common notation vF' to denote the terminal
coalgebra for F' (if it exists).

We will discuss the concrete form that induction and
coinduction take in a type theory in Chapter 3. Let us now
reiterate a famous Lemma concerning terminal F-coalgebras.

Lemma 2.11 (Lambek’s Lemma [1] ({7)). Let (T,t:T —
FT) be a terminal coalgebra. Then t is an isomorphism.

2.3 Monads

Monads are widely known in functional programming as a
means for modeling effects in “pure” languages and are also
central to this thesis. Let us recall the basic definitions[2][5].

Definition 2.12 (Monad ({/)). A monad T on a category
% is a triple (T',n,u), where T': 4 — % is an endofunctor and
n:Id—T,u:TT —T are natural transformations, satisfying
the following laws:

pxoprx =pxeoTx (M1)
pxonpx =idrx (MQ)
pxoTny=idpx (M3)

These laws are expressed by the following diagrams:
TTTX —X . TTX

Tux Hx

TTXM—X>TX

TX%TTX#TX
id

id

TX

Definition 2.13 (Monad Morphism ({7)). A morphism
between monads (S:¢ — € ,n°,u%) and (T:€ —€,n",u")
is a natural transformation a:: S — T between the underlying
functors such that the following diagrams commute.

X n—s> SX

e b

TX
SSX — 5« L 97X — % L, TTX
usl LMT
SX TX

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Object.Exponential.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Functor.Coalgebra.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Functor.Coalgebra.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Construction.F-Coalgebras.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Object.Terminal.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Construction.F-Coalgebras.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Monad.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Monad.Morphism.html

This yields a category of monads on a given category % that
we call Monads(€).

Proposition 2.14. Monads(%) is a category.

Monads can also be specified in a second equivalent way
that is better suited to describe computation.

Definition 2.15 (Kleisli Triple ({/)). A Kleisli triple on
a category € is a triple (F,n,(—)"), where F : |C| = |C| is
a mapping on objects, (nX:X—>FX)X€|C‘ is a family of
morphisms and for every morphism f: X — FY there exists
a morphism f*: FFX — FY called the Kleisli lifting, where
the following laws hold:

M =idpx (K1)
frony=f forany f: X - FY (K2)
frogx =(f*og) forany f:Y - FZ,g: X - FY (K3)

Let f: X - TY,g:Y — TZ be two programs, where T
is a Kleisli triple. These programs can be composed by
taking: f*og: X — TZ, which is called Kleisli composition.
Haskell’'s do-notation is a useful tool for writing Kleisli
composition in a legible way. We will sometimes express
(f*og)x equivalently as

doy <- gx
fy

This yields the category of programs for a Kleisli triple that
is called the Kleisli category.

Definition 2.16 (Kleisli Category ({7)). Given a monad T'
on a category €, the Kleisli category €7 is defined as:

. [€7]=]C]
e €T(X)Y)=%(X,TY)
e Composition of programs is Kleisli composition.

e The identity morphisms are the unit morphisms of T,
dy=ny: X—>TX

The laws of categories then follow from the Kleisli triple laws.

Proposition 2.17 ([4] (©)).

and monad are equivalent.

The notions of Kleisli triple

For the rest of this thesis we will use both equivalent notions
interchangeably to make definitions easier.

2.4 Strong and Commutative Monads

Consider the following program in do-notation

doy <- gx
fx.,y

where g: X - TY and f: X XY — TZ are programs and
T is a monad. Kleisli composition does not suffice for
interpreting this program, we will get stuck at
(id,g) ? I
X — XxTY —=T(XxY)—TZ.

Instead, one needs the following stronger notion of monad.

Definition 2.18 (Strong Monad ({7)). A monad (T',n,)
on a Cartesian category € is called strong if there exists
a natural transformation 7y y : X x TY — T'(X x Y) that
satisfies the following conditions:

Tryom) x =1y (S1)
TX,y° (idx xXny) =Nxyy (S2)
TX,y° (idx X py) = Pxxy ol Tx yoTx ry (S3)
MaX,Y,ZOTXxY,Z = TX,YxZO(idX X TY,Z) °Ox Y TZ (S4)
where ayy z = ((my, 7 0 M), My 0 Ty) + X X (Y x Z) —

(X xY')x Z is the associativity morphism on products.

Definition 2.19 (Strong Monad Morphism). A morphism
between two strong monads (S : € — €,n°, ", 7%) and
(T:6 — €¢,n",u",77) is a morphism between monads as
in Definition 2.13 where additionally the following diagram
commutes.

idxa

Xx8Y — XxTY

S(XxY) —*—— T(XxY)
As with monads this yields a category of strong monads on
% that we call StrongMonads(€).
Let us now consider the following two programs
do x <- p

y <-q
return (x, y)

doy<-g
X <-p
return (X, y)

Where p: TX and q:TY are computations of some monad
T. A monad where these programs are equal, is called
commutative.

Definition 2.20 (Commutative Monad ({7)). A strong
monad T is called commutative if the (right) strength 7
commutes with the induced left strength
oxy=Tswapory yoswap:TXxY =T (XxY)
that satisfies symmetrical conditions to the ones 7 satisfies.
Concretely, T is called commutative if the following diagram
commutes:
TXXxTY ———— T(TXXY)

T(XxTY) ——— T(XxY)

2.5 Free Objects

Free objects, roughly speaking, are constructions for in-
stantiating structure declarations in a minimal way. We
will rely on free structures in Chapter 5 to define a monad
in a general setting. We recall the definition to establish
some notation and then describe how to obtain a monad via
existence of free objects.

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Monad.Relative.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Construction.Kleisli.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Monad.Construction.Kleisli.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Monad.Strong.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Monad.Commutative.html

Definition 2.21 (Free Object ({/f)). Let €,2 be categories
and U : € — 2 be a forgetful functor (whose construction
usually is obvious). A free object on some object X € |Z] is
an object FFX €|%| together with a morphism n: X - UFX
such that for any Y € |€] and f: X — UY there exists a
unique morphism f*: FX —Y satisfying:

x 1 suy

//7
WJ/ e
o

UFX

Proposition 2.22 (7). Let U : € — 2 be a forgetful
functor. If for every X €|9)| a free object F X € |C| exists then
(X UFX: X »UFX,(f: X > UFY)* :UFX - UFY)
is a Kleisli triple on 9.

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.FreeObjects.Free.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.FreeObjects.Free.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Adjoint.Properties.html

oA W N e

3 Implementing Category Theory in Agda

There are many formalizations of category theory in proof
assistants like Coq or Agda. The benefits of such a formal-
ization are clear: having a usable formalization allows one td
reason about categorical notions in a type checked environ-
ment that makes errors less likely. Ideally such a developmen:t
will bring researchers together and enable them to work in a
unified setting that enables efficient communication of ideas
and concepts. In this thesis we will work with the depen-
dently typed programming language Agda [23] and the agda-
categories [20] library that serves as an extensive foundation
of categorical definitions. This chapter shall serve as a quick
introduction to the relevant parts of Agda’s type theory, the
agda-categories library, and the formalization of this thesis;

3

3.1 The Underlying Type Theory

Agda implements a Martin-Lof style dependent type theory
with inductive and coinductive types as well as an infinite
hierarchy of universes Set,, Seti, .., where usually Set,
is abbreviated as Set. Recall that inductive types usually
come with a principle for defining functions from inductive
types, called recursion and a principle for proving facts
about the inhabitants of inductive types, called induction.
These are standard notions and need no further introduc-
tion. Coinductive types come with dual principles that are
however lesser known. Dually to inductive types that arg
defined by their constructors, coinductive types are defined
by their destructors or their observational behavior. Take
the type of streams over a type A, for example. In Agda one
would define this type as a coinductive record like so:

recoxrd Stream (A : Set) : Set where
coinductive
field

head : A

tail : Stream A

i.e. the type of streams over A is defined by the two de-
structors head Stream A - A and tail : Stream A u
Stream A that return the head and the tail of the stream
respectively. Now, corecursion is a principle for defining
functions into coinductive types by specifying how results of
the function may be observed. Take for example the follow-
ing function which defines an infinite stream repeating the
same argument and is defined by use of Agda’s copatterns. !

repeat : {A : Set} (a : A) - Stream A
head (repeat a) = a
tail (repeat a) = repeat a

Let us introduce the usual notion of stream bisimilarity.
Given two streams, they are bisimilar if their heads are equal
and their tails are bisimilar. 3

record _=_ {A} (s : Stream A) (t : Stream A) : Set where
coinductive
field
head : head s = head t
tail : tail s = tail t

In this definition _=_ is the built-in propositional equality
in Agda with the single constructor refl. We can now use
coinduction as a proof principle to proof a fact about streams.

repeat-eq : V {A} (a : A) - repeat a = tail (repeat a)
head (repeat-eq {A} a) = refl
tail (repeat-eq {A} a) = repeat-eq a

Where in the coinductive step we were able to assume that
repeat a = tail(repeat a) already holds and showed that
thus tail(repeat a) = tail(tail(repeat a)) holds.

Streams are always infinite and thus this representation of
coinductive types as coinductive records is well suited for
them. However, consider the type of possibly infinite lists,
that we will call coList. In pseudo notation this type can
be defined as

codata colList (A : Set where
nil : colist A

¢ A - coList A - colList A

Set) :

That is, the coinductive type colList is defined by the
constructors nil and _::_. Agda does implement a second
way of defining coinductive types that allows exactly such
definitions, however the use of these sometimes called
positive coinductive types is discouraged, since it is known
to break subject reduction [21][22]. Instead, sticking to
coinductive records, we can define coList as two mutual
types, one inductive and the other coinductive:

mutual
data coList (A : Set) : Set where
nil : colist A
i: A - colList’” A - colList A
recoxd colList’ (A : Set) : Set where
coinductive
field force : colList A

Unfortunately, this does add the overhead of having to
define functions on colList as mutual recursive functions,
e.g. the repeat function from before can be defined as

mutual
repeat : {A : Set} (a : A) - colList A
repeat’ : {A : Set} (a : A) - colList’ A

repeat a = a :: repeat’ a
force (repeat’ a) = repeat a

or more succinctly using a A-function

repeat : {A : Set} (a : A) - colList A
repeat a = a :* A { .force - repeat a }

In Chapter 6 we will work with such a coinductive type that
is defined by constructors, hence to avoid the overhead of
defining every data type twice and using mutual function def-
initions in the thesis, we will work in a type theory that does
offer coinductive types with constructors and their respective
corecursion and coinduction principles. However, in the for-
malization we stick to using coinductive records as to imple-
ment best practices. The translation between the two styles
is straightforward, as illustrated by the previous example.

3.2 Setoid Enriched Categories

w e

4

Let us now consider how to implement category theory ih
Agda. The usual textbook definition of a category glosse
over some design decisions that have to be made wheh
implementing it in type theory. One would usually see
something like this: ’

10
11

Definition 3.1 (Category). A category consists of 12
o A collection of objects 12
e A collection of morphisms between objects 15
e For every two morphisms f: X —Y,g:Y — Z another

morphism go f: X — Z called the composition 17
o For every object X a morphism idy : X — X called the

identity 19

20
where the composition is associative, and the identity

morphisms are identities with respect to the composition.

Here collection refers to something that behaves set-like,
which is not a set and is needed to prevent size issues (there
is no set of all sets, otherwise we would obtain Russel’s para-
dox, but there is a collection of all sets), it is not immediately
clear how to translate this to type theory. Furthermore,
in mathematical textbooks equality between morphisms is
usually taken for granted, i.e. there is some global notion of
equality that is clear to everyone. In type theory we need
to be more thorough as there is no global notion of equality,
eligible for all purposes, e.g. the standard notion of propo-
sitional equality has issues when dealing with functions in
that it requires extra axioms like functional extensionality.

The definition of category that we will work with can be seen
in Listing 1 (unnecessary information has been stripped).
The key differences to the definition above are firstly that
instead of talking about collections, Agda’s infinite Set hier-
archy is utilized to prevent size issues. This notion of category
is thus parametrized by 3 universe levels, one for objects,
one for morphisms and one for equalities. A consequence is
that the category does not contain a type of all morphisms,

instead it contains a type of morphisms for any pair of
objects. Furthermore, the types of morphisms are equipped
with an equivalence relation _=_, making them setoids. This
addresses the aforementioned issue of how to implement
equality between morphisms: the notion of equality is just
added to the definition of a category. This version of the
notion of category is also called a setoid-enriched category.

As a consequence of using a custom equality relation,
proofs like °-resp-= are needed throughout the library
to make sure that operations on morphisms respect the
equivalence relation. In the thesis we will omit such proofs,
but they are contained in our formalization. Lastly, the
designers of agda-categories also include symmetric proofs
like sym-assoc to definitions, in this case to guarantee that
the opposite category of the opposite category is equal to
the original category, and a similar reason for requiring
identity?, we won’t address the need for these proofs and
just accept the requirement as given for the rest of the thesis.

record Category (o € e :
field
Obj : Set o
>:0bj - Obj - Set ¢
=~ _:YV{AB:0bj}- (A>sB)-(As B)-Sete

Level) : Set (suc (o U £ Ue)) where

id : ¥V {A:0bj} - (A s A)
°:V{ABCZObj}A(B=>C)H(A:>B)*(Aac)

assoc :YV{ABCD}{f:A>5B}{g:B > C}{(h:C> D}
L(hog)of=ho(gof)

sym-assoc : Y {ABCD} {f: A5 B}{g:B > C} {h:C > D}
~he(gef)=(heog)ef

identity! : V {AB} {f : A 5 B} ~id o f=f
identityr : V {AB} {f : A 5 B} - feid="T
identity? : V {A} - id o id {A} = id {A}
equiv : ¥ {A B} - IsEquivalence (_=_ {A} {B})
o-resp-= : ¥V {ABC}{fh:B > C{gi:A > B}
- f=h
~g=1i
~feg=hoi

Listing 1: Definition of Category [20]

From this it should be clear how other basic notions like
functors or natural transformations look in the library.

3.3 The formalization

Every result and used fact (except for Proposition 4.4) in
this thesis has been proven either in our own formalization®
or in the agda-categories library [20]. The formalization is
meant to be used as a reference alongside this thesis, where
concrete details of proofs can be looked up and verified. The
preferred format for viewing the formalization is as auto-
matically generated clickable HTML code?, where multiple
annotations explaining the structure have been added in

Thttps://git8.cs.fau.de/theses/bsc-leon-vatthauer
2https:/ /wwwecip.cs.fau.de/ hy84coky /bsc-thesis/

10

https://git8.cs.fau.de/theses/bsc-leon-vatthauer
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/

Markdown, however concrete explanations of the proofs and
their main ideas are mostly just contained in this thesis.

In the future this formalization may be adapted into a
separate library that uses the agda-categories library as a
basis but is more focussed on the study of partiality monads
and iteration theories. As such the formalization has been
structured similar to the agda-categories library, where key
concepts such as monads correspond to separate top-level
folders, which contain the core definitions as well as folders
for sub-concepts and their properties.

11

4 Partiality Monads

Moggi’s categorical semantics [5] describe a way to interpret
an effectful programming language in a category. For this
one needs a (strong) monad 7' capturing the desired effects,
then we can take the elements of TA as denotations for
programs of type A. The Kleisli category of T can be
viewed as the category of programs, which gives us a way of
composing programs (Kleisli composition).

For this thesis we will restrict ourselves to monads for
modeling partiality, the goal of this chapter is to capture
what it means to be a partiality monad and look at two
common examples.

4.1 Properties of Partiality Monads

We will now look at how to express the following non-
controversial properties of a minimal partiality monad
categorically:

1. Irrelevance of execution order
2. Partiality of programs
3. No other effect besides some form of non-termination

The first property of course holds for any commutative
monad, the other two are more interesting.

To ensure that programs are partial, we recall the following
notion by Cockett and Lack [9], that axiomatizes the notion
of partiality in a category:

Definition 4.1 (Restriction Structure ({7)). A re-
striction structure on a category % is a mapping
dom:€(X,)Y)— € (X,X) with the following properties:
feo(dom f)=f
(dom f)(domg) = (dom g)e(dom f)
dom (go(dom f))=(domg)o(dom f)
(domh)o f= fodom (ho f)
forany XY, Z€|¢|,f: X—=Y,g: X—>Z h:Y = Z.

The morphism dom f : X — X represents the domain of
definiteness of f: X =Y. In the category of partial functions
this takes the following form:

T
undefined

if f(x) is defined
else

(dom f)(x) :{

That is, dom f is only defined on values where f is defined
and for those values it behaves like the identity function.

Definition 4.2 (Restriction Category ({7)). Every
category has a trivial restriction structure by taking
dom(f: X —Y)=1idy. We call categories with a non-trivial
restriction structure restriction categories.

12

For a suitable defined partiality monad T the Kleisli category
%' should be a restriction category.

Lastly, we also recall the following notion by Bucalo et
al. [11] which captures what it means for a monad to have
no other side effect besides some sort of non-termination:

Definition 4.3 (Equational Lifting Monad ({7)). A com-
mutative monad T is called an equational lifting monad if

the following diagram commutes:

TX — 2 L TXxTX

T(n,id)

T(TXxX)
where A5 : X — X x X is the diagonal morphism.

To make the equational lifting property more compre-
hensible we can alternatively state it using do-notation.
The equational lifting property states that the following
programs must be equal:

do x <- p
return (x , p)

do x <- p
return (x , return x)

That is, if some computation p : TX terminates with the
result z: X, then p=returnx must hold afterwards. This of
course implies that running p multiple times yields the same
result as running p once.

Proposition 4.4 ([11]). IfT is an equational lifting monad
the Kleisli category €7 is a restriction category.

Definition 4.3 combines all three properties stated at the
beginning of the section, so when studying partiality monads
in this thesis, we ideally expect them to be equational lifting
monads. For the rest of this chapter we will use these
definitions to compare two monads that are commonly used
to model partiality.

4.2 The Maybe Monad

The endofunctor M X = X +1 extends to a monad by taking
Ny =11: X > X+1and py =[id,iy): (X+1)+1—X+1.
The monad laws follow easily (/). This is generally known
as the maybe monad and can be viewed as the canonical
example of an equational lifting monad.

Theorem 4.5 (7). M is an equational lifting monad.

In the setting of classical mathematics this monad is
therefore sufficient for modeling partiality, but in general

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Restriction.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Restriction.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.EquationalLifting.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Maybe.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Maybe.EquationalLifting.html

it will not be useful for modeling non-termination as a side
effect, since one would need to know beforehand whether
a program terminates or not. For the purpose of modeling
possibly non-terminating computations another monad has
been introduced by Capretta [12].

4.3 The Delay Monad

Capretta’s delay monad [12] is a coinductive datatype whose
inhabitants can be viewed as suspended computations.
This datatype is usually defined by the two coinductive
constructors now : X — DX and later : DX — DX, where
now lifts a value inside a computation and later intuitively
delays a computation by one time unit. See Chapter 6
for a type theoretical study of this monad. Categorically
we obtain the delay monad by the terminal coalgebras
DX =vA.X+ A, which we assume to exist. In this section
we will show that these terminal coalgebras indeed yield a
monad that is strong and commutative.

Since DX is defined as a terminal coalgebra, we can
define morphisms via corecursion and prove theorems
by coinduction. By Lemma 2.11 the coalgebra structure
out : DX — X 4+ DX is an isomorphism, whose inverse can
be decomposed into the two constructors mentioned before:
out™! =[now,later]: X+ DX — DX.

Lemma 4.6 (7).

e now:X — DX andlater: DX — DX satisfy:
outonow=i, outolater =i (D1)
e For any f: X — DY there exists a unique morphism
f*: DX — DY such that the following commutes.

The following conditions hold:

DX — % . X1DX
1’ l[outuf,izof*] (D2)
DY out Y+DY

o There exists a unique morphism 7: X x DY — D(X xY)
such that:

Xx Dy ‘&eu, x o (Y4+DY) —#, XxY4+XxDY

id+7’l
XxY+D(XxY)
(D3)

|

1

T

|
~

D(XxY)

out

Lemma 4.7 (/). The following properties of D hold:

1. outoDf=(f+Df)oout
2. f*=[f,(latero f) |oout
3. latero f*=(latero f)" = f*olater

Lemma 4.8 (7). D:=(D,now,(—)") is a Kleisli triple.

Terminality of the coalgebras
(DX,out:DX—>X+DX)X€‘(€| yields the following proof
principle.

Remark 4.9 (Proof by coinduction). Given two morphisms
f,9: X — DY. To show that f = g it suffices to show that

13

there exists a coalgebra structure a: X — Y + X such that
the following diagrams commute:

X —F——Y+X

lf lidff
DY — % s Y4DY

X —F—— YV+X

L‘] lid+g
DY — % . y4DY

Uniqueness of the coalgebra morphism [a) : (X, a) —
(DY ,out) then results in f=g.

Lemma 4.10 (). D is a strong monad.

To prove that D is commutative we will use another proof
principle previously called the Solution Theorem [10] or
Parametric Corecursion [8]. In our setting this takes the
following form.

Definition 4.11 ({7). We call a morphism ¢g: X - D(Y +X)
guarded if there exists a morphism h: X - Y +D(Y + X)

such that the following diagram commutes:
g

X D(Y +X)
hl J{out
i1 +ida
Corollary 4.12 (Solution Theorem ({7)). Let

g: X = D(Y+X) be guarded. Solutions of g are unique, i.e.
given two morphisms f,i: X — DY then f=[now,f] og and
i=[now,i]" og already implies f=1.

Let us record some facts that we will use to prove commuta-
tivity of D:

Corollary 4.13 ({7, <{J). These properties of T and o hold:

outoT = (id+7)odstlo(id x out) (1y)
outoo = (id+0o)odstro(out xid) (o)
To(idx out 1) =out Lo (id+7)odstl (72)
oo(out ! xid)=out to(id+o)odstr (o)

Theorem 4.14 (/). D is commutative.

We have now seen that D is strong and commutative,
however it is not an equational lifting monad, since besides
modeling non-termination, the delay monad also counts the
execution time of a computation. This is a result of the too
intensional notion of equality that this monad comes with.

In Chapter 6 we will see a way to remedy this: taking the
quotient of the delay monad where execution time is ignored.
This will then yield an equational lifting monad on the cat-
egory of setoids. However, in a general setting it is generally
believed to be impossible to define a monad structure on
this quotient. Chapman et al. [16] have identified the axiom
of countable choice (which crucially holds in the category
of setoids) as a sufficient requirement for defining a monad
structure on the quotient of D.

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.Strong.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.Strong.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.Commutative.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Delay.Commutative.html

5 lteration Algebras and Monads

In this chapter we will draw on the inherent connection
between partiality and iteration to establish a partiality
monad in a general setting without axioms by utilizing
previous research on iteration theories.

5.1 Elgot Algebras

Recall the following notion from [13], previously called
complete Elgot algebra.

Definition 5.1 (Guarded Elgot Algebra ({7)). Given a
functor H: % — %, a (H-)guarded Elgot algebra consists of:

o An object A€|?],
e a H-algebra structure a: H A— A,
o and for every f: X — A+ HX an iteration f*: X — A,
satisfying the following axioms:
— Fixpoint: f*=[id,acH(f*)]of
forany f: X —>A+HX,
— Uniformity: (id+Hh)o f=goh implies f*=g%oh
forany f: X —>A+HX,0:Y > A+HY h: X —>Y,
— Compositionality: ((f’j—l—id)oh)Ij =
([(id+Hiy)o f ipo Hiloliy h]) "o
forany f: X —>A+HX h:Y - X+HY.

Consider an Elgot algebra over the identity functor
Id : € — € together with the trivial Id-algebra structure
id : A — A. Morphisms of the form f: X — A+ X can
then be viewed as modeling one iteration of a loop, where
X €% is the state space and A € |€| the object of values.

Intuitively, in such a setting the iteration operator (—)t runs
such a morphism in a loop until it terminates (or diverges),
thus assigning it a solution. This is what the Fixpoint
axiom guarantees. On the other hand the Uniformity
axiom states how to handle loop invariants and finally, the
Compositionality axiom is the most sophisticated one,
stating that compatible iterations can be combined into a
single iteration with a merged state space.

The previous intuition gives rise to the following simpler
definition that has been introduced in [19].

Definition 5.2 (Elgot Algebra ({7)). A (unguarded) Elgot
Algebra [19] consists of:

o Anobject A€|%|,
o and for every f: X — A+ X an iteration ff: X — A,
satisfying the following axioms:
— Fixpoint: f*=[id,f*]of
forany f: X — A+ X,
— Uniformity: (id+h)of=goh implies f*=gfoh
forany f: X —A+X,9:Y - A+Y h: X =Y,

— Folding: ((fi+id)oh) =[(id+i,)o f,inoh]
forany f: X > A+X,h:Y > X+Y.

Note that the Uniformity axiom requires an identity to
be proven, before it can be applied. However, we will omit
these proofs in most parts of the thesis, since they mostly
follow by simple rewriting on (co)products, the full proofs
can be looked up in the accompanying formalization.

Now, in this setting the simpler Folding axiom replaces the
sophisticated Compositionality axiom. Indeed, for Id-
guarded Elgot algebras with a trivial algebra structure, the
Folding and Compositionality axioms are equivalent [19],
which is partly illustrated by the following Lemma.

Lemma 5.3 (7). Fvery Elgot algebra (A,(—)t) satisfies the
following additional axioms

o Compositionality: ((fj+id)oh)j =
([(id+iy)o figois)o[iy b)) oi
forany [X—=A+X h:Y - X+Y,

o Stutter: (([h,h]+id)o f)' = (iyoh,[h+iy,iyoiy]) oinr
forany f: X —>(Y+Y)+ X h:Y — A,

b

e Diamond: ((id+A)of) = ([iy,((id+A)o f) +id]o f)

forany f: X — A+(X+X).

Note that in [19] it has been shown that the Diamond axiom
implies Compositionality, yielding another definition of
Elgot algebras only requiring the Fixpoint, Uniformity
and Diamond axioms.

Let us now consider morphisms that are coherent with

respect to the iteration operator. A special case being
morphisms between Elgot algebras.

Definition 5.4 (Iteration Preserving Morphisms ({7)). Let
(A,(—)u“),(B,(—)ub) be two Elgot algebras.
A morphism f: X x A— B is called right iteration preserving
if

Folidx hie)=((f+id)odstlo(idx h))™
forany h:Y — A+Y.
Symmetrically a morphism g : A x X — B is called left
iteration preserving if

Fo(hte xid) = ((f+id)odstro(hxid))™
for any h:Y — A+Y.

Let us also consider the special case where X = 1. A
morphism f:A— B is called iteration preserving if

fohte =((f+id)oh)™
forany h:Y — A+Y.

14

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Category.Construction.ElgotAlgebras.html

We will now study the category of Elgot algebras and
iteration preserving morphisms that we call ElgotAlgs(€).
Let us introduce notation for morphisms between El-
got algebras: we denote an Elgot algebra morphism
f: (A,(—)n“) — (B,(—)ub) as f: A< B, where we omit stating
the iteration operator.

Lemma 5.5 (7). ElgotAlgs(€) is a category.
Products and exponentials of Elgot algebras can be formed

in a canonical way, which is illustrated by the following two
Lemmas.

Lemma 5.6 ({7).
FElgotAlgs(€).

If € is a Cartesian category, so is

Lemma 5.7 (/). Given X € |€| and A € |ElgotAlgs(%)).
The exponential X (if it exists) can be equipped with an
Elgot algebra structure.

5.2 The Initial Pre-Elgot Monad

In this section we will study the monad that arises from ex-
istence of all free Elgot algebras. We will show that this is an
equational lifting monad and also the initial strong pre-Elgot
monad. Starting in thissection we will now omit indices of the
iteration operator of Elgot algebras for the sake of readability.

Let us first recall the following notion that was introduced
in [14] and reformulated in [19].

Definition 5.8 (Elgot Monad). An Elgot monad consists of

e A monad T,
o for every f: X — T(Y 4+ X) an iteration ff: X — TY
satisfying:
— Fixpoint: f‘L:[n,f‘L]*of
for any f: X —>T(Y +X),
— Uniformity: foh=T(id+h) implies fTog=g'
forany f: X—>T(Y+X),0: Z—-T(Y+2Z),h: Z— X,
— Naturality: g*off :([Tilog,noiz]*of)T
forany f: X —->T(Y+X),9:Y—>TZ,
— Codiagonal: fJfT:(Zl’[z'd,ig]Of)T
forany f: X >T((Y+X)+X).

If the monad T 1is strong with strength 7 and
ro(idx f1) = (Tdstloro(idx f))! for any f: X —T(Y +X),
then T is a strong Elgot monad.

We regard Elgot monads as minimal semantic structures for
interpreting side-effecting while loops, as has been argued
in [17], [18]. The following notion has been introduced in [19]
as a weaker approximation of the notion of Elgot monad,
using less sophisticated axioms.

Definition 5.9 (Pre-Elgot Monad ({7)). A monad T is
called pre-Elgot if every T'X extends to an Elgot algebra such
that for every f: X —TY the Kleisli lifting f*:TX —-TY is
iteration preserving.

If the monad T is additionally strong and the strength 7 is
right iteration preserving we call T strong pre-Elgot.

(Strong) pre-Elgot monads form a subcategory of Monads(%)
where objects are (strong) pre-Elgot monads and morphisms
between pre-Elgot monads are natural transformations « as
in Definition 2.13 such that additionally each ax is iteration
preserving. Similarly, morphisms between strong pre-Elgot
monads are natural transformations « as in Definition 2.19
such that each ay is iteration preserving. We call these
categories PreFElgot(¢) and StrongPreElgot(€) respectively.

Lemma 5.10 ({7, <). PreFElgot(¥) and StrongPreElgot(¥)
are categories.

Assuming a form of the axiom of countable choice it has been
proven in [19] that the initial pre-Elgot monad and the initial
Elgot monad coincide, thus closing the expressivity gap in
such a setting. However, it is believed to be impossible to
close this gap in a general setting.

Proposition 5.11 ({). Existence of all free Elgot algebras
yields a monad that we call K.

We will need a notion of stability for K to make progress,
since we do not assume % to be Cartesian closed.

Definition 5.12 (Right-Stable Free Elgot Algebra ({7,
{7)). Let KY be a free Elgot algebra on Y € |¢|. We call
KY right-stable if for every A € ElgotAlgs(€),X € |€|, and
f: X XY — A there exists a unique right iteration preserving
f”: X x KY — A such that

XxY % A
idxn S
XxKY

commutes.

A symmetrical variant of the previous definition is sometimes
useful.

Definition 5.13 (Left-Stable Free Elgot Algebra ({7,
7). Let KY be a free Elgot algebra on Y € |¢]. We call
KY left-stable if for every A € ElgotAlgs(€),X € |€|, and
f:Y x X — A there exists a unique left iteration preserving
fEKY x X — A such that

Xxy — 1 4
nxid 2
KXXY

commutes.

Lemma 5.14 (7). Definitions 5.12 and 5.13 are equivalent
in the sense that they imply each other.

Lemma 5.15 (7). In a Cartesian closed category every
free Elgot algebra is stable.

15

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Category.Construction.ElgotAlgebras.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Category.Construction.ElgotAlgebras.Products.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Category.Construction.ElgotAlgebras.Exponentials.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.PreElgot.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Category.Construction.PreElgotMonads.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Category.Construction.StrongPreElgotMonads.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.Stable.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.Free.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.Stable.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.Free.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.Stable.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Algebra.Elgot.Properties.html

For the rest of this chapter we will assume every K X to exist
and be stable. Under these assumptions we show that K
is an equational lifting monad and in fact the initial strong
pre-Elgot monad. Let us first introduce a proof principle
similar to the one introduced in Remark 4.9.

Remark 5.16 (Proof by right-stability ({7)).

Given two morphisms g, h : X x KY — A where
X,Y € |€|, A € |ElgotAlgs(€)|. To show that g = h, it
suffices to show that g and h are right iteration preserving
and there exists a morphism f: X xY — A such that

XxKY ! A
idxmn

XxY

commutes.
Of course there is also a symmetric version of this.

Remark 5.17 (Proof by left-stability ({7)). Given
two morphisms g, h : KX x Y — A where
X,Y € |6|, A € |ElgotAlgs(€)|. To show that g = h, it
suffices to show that g and h are left iteration preserving
and there exists a morphism f: X xY — A such that

KXY § A
nxid

XxY
commutes.

Lemma 5.18 (7). K is a strong monad.

As we did when proving commutativity of D, let us record
some facts about 7 and the induced o, before proving
commutativity of K.

Corollary 5.19 (7). o is left iteration preserving and satis-
fiesoo(nxid)=n and the following properties of T and o hold.

To(f*xg*) = (ro(idxg)) oTo(f* xid) (1)
go(f*xg")=(oo(fxid)) oo (idx g*) (o1)

The following Lemma is central to the proof of commutativ-
ity.

Lemma 5.20 (7). Given f: X —KY+X,g:Z—KA+Z,
oo (((n+id)o f)F x (n+id)og)) =o*oro(((n+id)o f)F x ((n+id)og)).

Lemma 5.21 (7). K is a commutative monad.
Theorem 5.22 (7). K is an equational lifting monad.

Theorem 5.23 ({/,{/). K is the initial (strong) pre-Elgot
monad.

16

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.Strong.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.Commutative.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.Commutative.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.Commutative.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.EquationalLifting.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.PreElgot.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.K.StrongPreElgot.html

6 A Case Study on Setoids

In Chapter 4 we have argued that the delay monad is not
an equational lifting monad, because it does not only model
partiality, but it also considers computation time in its
built-in notion of equality. One way to remedy this is to take
the quotient of the delay monad where computations with
the same result are identified. In this chapter we will use the
quotients-as-setoid approach, i.e. we will work in the category
of setoids and show that the quotiented delay monad is an
instance of the previously defined monad K in this category.

6.1 Setoids in Type Theory

We will now introduce the category that the rest of the chap-
ter will take place in. Let us start with some basic definitions.

Definition 6.1 (Setoid ({7)). A setoid is a tuple (A,é)

where A (usually called the carrier) is a type and 4 is an
equivalence relation on the inhabitants of A.

For brevity, we will not use the tuple notation most of
the time, instead we will just say ‘Let A be a setoid’ and

implicitly call the equivalence relation 4

Definition 6.2 (Setoid Morphism ({7)). A morphism
between setoids A and B constitutes a function f: A — B
between the carriers, such that f respects the equivalences,
ie. forany z,y: A, z 2 y implies f x 2 fy. We will denote
setoid morphisms as A~» B.

Let us now consider the function space setoid, which is of
special interest, since it carries a notion of equality between
functions.

Definition 6.3 (Function Space Setoid). Given two setoids
A and B, the function space setoid on these setoids is defined
as (A ~» B,=) or just A ~» B, where = is the point wise
equality on setoid morphisms.

Setoids together with setoid morphisms form a category
that we will call Setoids. Properties of Setoids have already
been examined in [15], however we will reiterate some of
these properties now to introduce notation that will be used
for the rest of the chapter.

Proposition 6.4 (7). Setoids is a distributive category.

Proposition 6.5 (7). Setoids is Cartesian closed.

6.2 Quotienting the Delay Monad

In this section we will introduce data types only using
inference rules. For that we adopt the convention that
coinductive types are introduced by doubled lines while
inductive types are introduced with a single line.

Now, recall from previous chapters that Capretta’s de-
lay monad [12] is a coinductive type defined by the two
constructors:

z:A z:DA

nowx: DA laterxz:D A
Furthermore, let us recall two different notions of bisimilarity
between inhabitants of the delay type that have been studied
previously in [16]. Afterwards, we will reiterate some facts
that have been proven in [16] to then finally prove that the
quotiented delay type extends to an instance of the monad
K that has been introduced in Chapter 5.

Let A be a setoid. Lifting the equivalence 2t DA
yields another equivalence called strong bisimilarity. This
equivalence is defined by the rules

A
T=y T~y

T~y later x ~latery
Proposition 6.6 ([16] (<7)). (D A,~) is a setoid and admits
a monad structure.

Computations in (D A,~) are only identified if they evaluate
to the same result in the same number of steps. In many
contexts this behavior is too intensional. Instead, we will
now consider the quotient of this setoid, where all compu-
tations that evaluate to the same result are identified. Let
us first define a relation that states that two computations
evaluate to the same result

xlc
laterxlc .

A
=Y

nowzx Ly

Now, we call two computations p and q weakly bisimilar or
p=q if they evaluate to the same result, or don’t evaluate at
all, which is specified by the rules

aZb Tla ylb TRY

TRY later x ~latery

Proposition 6.7 ([12] (7)). (D A,~) is a setoid and admits
a monad structure.

For the rest of this chapter we will abbreviate D A= (D As™)
and DA= (D 4,~).

17

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Relation.Binary.Bundles.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Function.Bundles.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Category.Ambient.Setoids.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Categories.Category.Instance.Properties.Setoids.CCC.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Setoids.Delay.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Setoids.Delay.html

Lemma 6.8 (7). Every DA can be equipped with an Elgot
algebra structure.

In the next proof a notion of discretized setoid is needed,
i.e. given a setoid Z, we can discretize Z by replacing the
equivalence relation with propositional equality, yielding
|Z|:=(Z,=). Now, the following corollary describes how to

transform an iteration on D A into an iteration on D A.

Corollary 6.9 (/). Given a setoid morphism

g: X vw D A+ X, there exists a setoid morphism
g:|X| 2 D A+|X| such that gz~ G x for any z: X.

Theorem 6.10 (7). Every DA can be equipped with a free
Elgot algebra structure.

We have shown in Theorem 6.10 that every D A extends
to a free Elgot algebra. Together with Proposition 6.5 and
Lemma 5.15 this yields a description for the monad K which
has been defined in Chapter 5, in the category Setoids.

18

https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Setoids.K.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Setoids.K.html
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/Monad.Instance.Setoids.K.html

7 Conclusion

We have considered a novel approach to defining a monad suitable for modelling partiality from first principles, which has
first been introduced in [19]. Using the dependently typed programming language Agda, we were able to formally verify
important properties of this monad: it is an equational lifting monad, i.e. a monad that offers no other side effect besides
some form of non-termination and furthermore it turns out to be the initial pre-Elgot monad. Moreover, we have considered
a concrete description of this monad in the category of setoids, where it turns out to be a quotient of the delay monad.
With this thesis we have thus created a small Agda library that contains categorical concepts concerning partiality and
iteration theories. Future work might improve on this library by formalizing important results concerning partiality
monads, such as the fact that every equational lifting monad has a restriction category as its Kleisli category. Furthermore,
one can continue studying the delay monad in a categorical setting, by modeling the quotient by weak bisimilarity of the
delay monad through a certain coequalizer, as has been done in [19], and then identifying assumptions under which this
constitutes a suitable monad for modeling partiality.

19

Bibliography

(1]

J. Lambek, ‘A fixpoint theorem for complete categories,’
Mathematische Zeitschrift, vol. 103, pp. 151-161, 1968.

S. M. Lane, ‘Categories for the working mathematician,’
1971. [Online]. Available: https://api.semanticscholar.
org/CorpusID:122892655.

G. D. Plotkin, ‘Call-by-name, call-by-value and the A-
calculus,” Theoretical computer science, vol. 1, no. 2,
pp. 125-159, 1975.

E. G. Manes, ‘Algebraic theories in a category,” Algebraic
Theories, pp. 161-279, 1976.

E. Moggi, ‘Notions of computation and monads,’ Inf. Com-
put., vol. 93, no. 1, pp. 55-92, Jul. 1991, 1SSN: 0890-5401.
DOI: 10.1016/0890-5401(91)90052-4. [Online]. Available:
https://doi.org/10.1016/0890-5401(91)90052-4.

D. S. Scott, ‘A type-theoretical alternative to iswim, cuch,
owhy,” Theoretical Computer Science, vol. 121, no. 1-2,
pp- 411-440, 1993.

V. Vene, Categorical programming with inductive and coin-
ductive types. Citeseer, 2000.

L. S. Moss, ‘Parametric corecursion,” Theoretical Computer
Science, vol. 260, no. 1, pp. 139-163, 2001, Coalgebraic
Methods in Computer Science 1998, 1ssN: 0304-3975. DOI:
https://doi.org/10.1016/S0304 - 3975(00) 00126 - 2.
[Online]. Available: https : //www . sciencedirect . com/
science/article/pii/S0304397500001262.

J.R. B. Cockett and S. Lack, ‘Restriction categories i: Cate-
gories of partial maps,” Theor. Comput. Sci., vol. 270, no. 1—
2, pp. 223259, Jan. 2002, 1SSN: 0304-3975. DOI: 10.1016/
S0304 - 3975(00) 20382 - 0. [Online]. Available: https: //
doi.org/10.1016/S0304-3975(00)00382-0.

P. Aczel, J. Addamek, S. Milius, and J. Velebil, ‘Infinite
trees and completely iterative theories: A coalgebraic view,’
Theor. Comput. Sci., vol. 300, no. 1-3, pp. 1-45, May 2003,
1SSN: 0304-3975. DOI: 10.1016/50304 - 3975(02) 00728 - 4.
[Online]. Available: https://doi.org/10.1016/S0304 -
3975(02)00728-4.

A. Bucalo, C. Fiihrmann, and A. Simpson, ‘An equational
notion of lifting monad,” Theor. Comput. Sci., vol. 294,
no. 1-2; pp. 31-60, Feb. 2003, 1ssN: 0304-3975. DOI: 10 .
1016/S0304-3975(01)00243- 2. [Online]. Available: https:
//doi.org/10.1016/S0304-3975(01)00243-2.

V. Capretta, ‘General recursion via coinductive types,’
CoRR, vol. abs/cs/0505037, 2005. arXiv: cs/0505037. [On-
line]. Available: http://arxiv.org/abs/cs/0505037.

J. Adamek, S. Milius, and J. Velebil, ‘Elgot algebras,” CoRR,
vol. abs/cs/0609040, 2006. arXiv: cs / ©0609040. [Online].
Available: http://arxiv.org/abs/cs/0609040.

J. Addmek, S. Milius, and J. Velebil, ‘Elgot theories: A new
perspective on the equational properties of iteration,” Math-
ematical Structures in Computer Science, vol. 21, no. 2,
pp. 417480, 2011. DOI: 10.1017/50960129510000496.

Y. Kinoshita and J. Power, ‘Category theoretic structure of
setoids,” Theoretical Computer Science, vol. 546, pp. 145—
163, 2014, Models of Interaction: Essays in Honour of Glynn
Winskel, 1sSN: 0304-3975. DOI: https : / /doi . org/ 10 .
1016/ j . tcs . 2014 . @3 . 006. [Online]. Available: https :
/ / www . sciencedirect . com / science / article / pii/
S0304397514001819.

20

[16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

J. Chapman, T. Uustalu, and N. Veltri, ‘Quotienting the de-
lay monad by weak bisimilarity,” in Proceedings of the 12th
International Colloquium on Theoretical Aspects of Com-
puting - ICTAC 2015 - Volume 9399, Berlin, Heidelberg:
Springer-Verlag, 2015, pp. 110-125, 1sBN: 9783319251493.
DOI: 10.1007/978-3-319-25150-9_8. [Online]. Available:
https://doi.org/10.1007/978-3-319-25150-9_8.

S. Goncharov, L. Schréder, C. Rauch, and M. Pir6g, ‘Uni-
fying guarded and unguarded iteration,’ in Foundations of
Software Science and Computation Structures: 20th Inter-
national Conference, FOSSACS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings 20, Springer, 2017, pp. 517-533.

S. Goncharov, L. Schréoder, C. Rauch, and J. Jakob, ‘Un-
guarded recursion on coinductive resumptions,” Logical
Methods in Computer Science, vol. 14, 2018.

S. Goncharov, ‘Uniform elgot iteration in foundations,’
CoRR, vol. abs/2102.11828, 2021. arXiv: 2102.11828. [On-
line]. Available: https://arxiv.org/abs/2102.11828.

J. Z. S. Hu and J. Carette, ‘Formalizing category theory
in agda,’ in Proceedings of the 10th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs,
ser. CPP 2021, Virtual, Denmark: Association for Comput-
ing Machinery, 2021, pp. 327-342, 1SBN: 9781450382991.
DOL: 10.1145/3437992.3439922. [Online]. Available: https:
//doi.org/10.1145/3437992.3439922.

T. A. Team, Agda user manual, version 2.6.4.3, Mar. 2024.
[Online]. Available: https ://agda. readthedocs . io/en/
v2.6.4.3/.

T. C. D. Team, The coq reference manual, version 8.19.1,
Mar. 2024. [Online]. Available: https://coq.inria. fr/
doc/V8.19.0/refman/.

Agda Developers, Agda, version 2.6.5. [Online]. Available:
https://agda.readthedocs.io/.

https://api.semanticscholar.org/CorpusID:122892655
https://api.semanticscholar.org/CorpusID:122892655
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00126-2
https://www.sciencedirect.com/science/article/pii/S0304397500001262
https://www.sciencedirect.com/science/article/pii/S0304397500001262
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
https://arxiv.org/abs/cs/0505037
http://arxiv.org/abs/cs/0505037
https://arxiv.org/abs/cs/0609040
http://arxiv.org/abs/cs/0609040
https://doi.org/10.1017/S0960129510000496
https://doi.org/https://doi.org/10.1016/j.tcs.2014.03.006
https://doi.org/https://doi.org/10.1016/j.tcs.2014.03.006
https://www.sciencedirect.com/science/article/pii/S0304397514001819
https://www.sciencedirect.com/science/article/pii/S0304397514001819
https://www.sciencedirect.com/science/article/pii/S0304397514001819
https://doi.org/10.1007/978-3-319-25150-9_8
https://doi.org/10.1007/978-3-319-25150-9_8
https://arxiv.org/abs/2102.11828
https://arxiv.org/abs/2102.11828
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://agda.readthedocs.io/en/v2.6.4.3/
https://agda.readthedocs.io/en/v2.6.4.3/
https://coq.inria.fr/doc/V8.19.0/refman/
https://coq.inria.fr/doc/V8.19.0/refman/
https://agda.readthedocs.io/

	Introduction
	Preliminaries
	Distributive Categories
	F-Coalgebras
	Monads
	Strong and Commutative Monads
	Free Objects

	Implementing Category Theory in Agda
	The Underlying Type Theory
	Setoid Enriched Categories
	The formalization

	Partiality Monads
	Properties of Partiality Monads
	The Maybe Monad
	The Delay Monad

	Iteration Algebras and Monads
	Elgot Algebras
	The Initial Pre-Elgot Monad

	A Case Study on Setoids
	Setoids in Type Theory
	Quotienting the Delay Monad

	Conclusion
	Bibliography

