Friedrich-Alexander-Universität Technische Fakultät

Theorie der Programmierung

Übung 03 — Polynomordnungen

Leon Vatthauer

16. Mai 2025

Polynomordnungen

Definition 2.42 (Polynomordnung)

Eine monotone polynomielle Interpretation \mathcal{A} für Σ besteht aus

- einem streng monotonen Polynom $0 \neq p_f \in \mathbb{N}[x_1, \dots, x_n]$ für jedes $f/n \in \Sigma$,
- einer Teilmenge $\emptyset \neq A \subseteq \mathbb{N} \setminus \{0\}$ die unter den p_f abgeschlossen ist.

L. Vatthauer fau-beamer 16. Mai 2025 2/5

Polynomordnungen

Definition 2.42 (Polynomordnung)

Eine monotone polynomielle Interpretation \mathcal{A} für Σ besteht aus

- einem streng monotonen Polynom $0 \neq p_f \in \mathbb{N}[x_1, \dots, x_n]$ für jedes $f/n \in \Sigma$,
- einer Teilmenge $\emptyset \neq A \subseteq \mathbb{N} \setminus \{0\}$ die unter den p_f abgeschlossen ist.

Die hierdurch induzierte Polynomordnung auf Termen ist definiert durch

$$t \succ_{\mathcal{A}} s : \iff p_t >_A p_s$$

Wobei p_t definiert ist durch:

$$p_x = x$$
 $p_{f(t_1,...,t_n)} = p_f(p_{t_1},...,p_{t_n}).$

Polynomordnungen

Definition 2.42 (Polynomordnung)

Eine monotone polynomielle Interpretation \mathcal{A} für Σ besteht aus

- einem streng monotonen Polynom $0 \neq p_f \in \mathbb{N}[x_1, \dots, x_n]$ für jedes $f/n \in \Sigma$,
- einer Teilmenge $\emptyset \neq A \subseteq \mathbb{N} \setminus \{0\}$ die unter den p_f abgeschlossen ist.

Die hierdurch induzierte Polynomordnung auf Termen ist definiert durch

$$t \succ_{\mathcal{A}} s : \iff p_t >_A p_s$$

Wobei p_t definiert ist durch:

$$p_x = x$$
 $p_{f(t_1,...,t_n)} = p_f(p_{t_1},...,p_{t_n}).$

Korollar 2.45

Sei \rightarrow_0 ein TES und $>_A$ eine Polynomordnung. Falls

$$t \to_0 s \Rightarrow t \succ_A s$$

für alle Terme t, s,

dann ist \rightarrow stark normalisierend.

Terminationsbeweise

3/5

Terminationsbeweise

Sei $T = (\Sigma, \to_0)$ ein Termersetzungssystem. Wir wollen zeigen, dass T stark normalisierend (SN) ist, dazu gehen wir wie folgt vor:

- 1. Stelle für jedes $f/n \in \Sigma$ ein Polynom $p_f(x_1, \ldots, x_n)$ auf.
- 2. Wähle eine Domäne $\emptyset \neq A \subseteq \mathbb{N} \setminus \{0\}$ die unter den p_f abgeschlossen ist. (Meistens eine Menge der Form $\mathbb{N}_{\geq k} = \{n \in \mathbb{N} \mid n \geq k\}$)
- 3. Zeige $\forall t, s. \ t \rightarrow_0 s \Rightarrow p_t >_A p_s$.

L. Vatthauer fau-beamer 16. Mai 2025

Terminationsbeweise mittels Polynomordnung

Wir betrachten das folgende TES für $\Sigma = \{ \odot/2, \oplus/2 \}$:

$$x \oplus (y \odot z) \rightarrow_0 (x \oplus y) \odot (x \oplus z)$$

$$(x \odot y) \odot z \rightarrow_0 x \odot (y \odot z)$$

L. Vatthauer fau-beamer 16. Mai 2025

4/5

Terminationsbeweise mittels Polynomordnung

Wir betrachten das folgende TES für $\Sigma = \{ \odot/2, \oplus/2 \}$:

$$x \oplus (y \odot z) \to_0 (x \oplus y) \odot (x \oplus z) \tag{1}$$

$$(x \odot y) \odot z \to_0 x \odot (y \odot z)$$

Wir wollen zeigen, dass das TES SN ist. Dazu verwenden wir die folgenden Polynome:

$$p_{\oplus}(x,y) := xy$$

$$p_{\odot}(x,y) := 2x + y + 1$$

Terminationsbeweise mittels Polynomordnung

Wir betrachten das folgende TES für $\Sigma = \{ \odot/2, \oplus/2 \}$:

$$x \oplus (y \odot z) \to_0 (x \oplus y) \odot (x \oplus z) \tag{1}$$

$$(x \odot y) \odot z \to_0 x \odot (y \odot z) \tag{2}$$

Wir wollen zeigen, dass das TES SN ist. Dazu verwenden wir die folgenden Polynome:

$$p_{\oplus}(x,y) := xy$$
$$p_{\odot}(x,y) := 2x + y + 1$$

1. Es sei $\mathcal{A}=\langle \mathbb{N},p_\oplus,p_\odot \rangle$ die einfachste auf p_\oplus und p_\odot basierende polynomielle Interpretation von Σ . Begründen Sie, dass die von \mathcal{A} induzierte Polynomordnung $\succ_{\mathcal{A}}$ nicht geeignet ist, um die Termination des Systems zu zeigen.

Terminationsbeweise mittels Polynomordnung

Wir betrachten das folgende TES für $\Sigma = \{ \odot/2, \oplus/2 \}$:

$$x \oplus (y \odot z) \to_0 (x \oplus y) \odot (x \oplus z) \tag{1}$$

$$(x \odot y) \odot z \to_0 x \odot (y \odot z) \tag{2}$$

Wir wollen zeigen, dass das TES SN ist. Dazu verwenden wir die folgenden Polynome:

$$p_{\oplus}(x,y) := xy$$
$$p_{\odot}(x,y) := 2x + y + 1$$

2. Finden Sie eine geeignete Domäne $B \subseteq \mathbb{N}_{\geq 1}$ für welche die durch die Interpretation $\mathcal{B} = \langle B, p_{\oplus}, p_{\odot} \rangle$ induzierte Polynomordnung $\succ_{\mathcal{B}}$ die Termination des Systems zeigt.

Terminationsbeweise mittels Polynomordnung

Wir betrachten das folgende TES für $\Sigma = \{ \odot/2, \oplus/2 \}$:

$$x \oplus (y \odot z) \to_0 (x \oplus y) \odot (x \oplus z) \tag{1}$$

$$(x \odot y) \odot z \to_0 x \odot (y \odot z) \tag{2}$$

Wir wollen zeigen, dass das TES SN ist. Dazu verwenden wir die folgenden Polynome:

$$p_{\oplus}(x,y) := xy$$
$$p_{\odot}(x,y) := 2x + y + 1$$

3. Wir ersetzten die zweite Reduktionsregel durch

$$x \odot (y \odot z) \rightarrow_0 (x \odot y) \odot z.$$
 (3)

Zeigen Sie unter Verwendung einer Polynomordnung, dass das so erhaltene System ebenfalls stark normalisierend ist.

Woher kommen diese Polynome?

Wir betrachten das folgende in Haskell-Syntax gegebene Programm:

data Nat =
$$Z \mid S$$
 Nat

$$X + Z = X$$

$$X + (S y) = S (X + y)$$

$$dZ = Z$$

 $d(Sx) = S(S(dx))$

$$qZ = Z$$

 $q(Sx) = qx + S(dx)$

Woher kommen diese Polynome?

Wir betrachten das folgende in Haskell-Syntax gegebene Programm:

data Nat =
$$Z \mid S$$
 Nat

$$x + Z = x$$

$$x + (Sy) = S(x + y)$$

$$dZ = Z$$

$$d(Sx) = S(S(dx))$$

$$qZ = Z$$

$$q(Sx) = qx + S(dx)$$

1. Drücken Sie dieses Programm als TES über der Signatur $\Sigma = \{0/0, s/1, +/2, d/1, q/1\}$ aus.

Woher kommen diese Polynome?

Wir betrachten das folgende in Haskell-Syntax gegebene Programm:

data Nat =
$$Z \mid S$$
 Nat

$$X + Z = X$$

$$X + (Sy) = S(X + y)$$

$$dZ = Z$$

$$d(Sx) = S(S(dx))$$

$$qZ = Z$$

$$q(Sx) = qx + S(dx)$$

2. Verwenden Sie eine Polynomordnung um zu beweisen, dass das System stark normalisierend ist. **Hinweis:** Wählen Sie $p_s(x) := x + 1$ und leiten Sie hieraus geeignete Werte für p_+, p_d, p_q und p_0 her.

Woher kommen diese Polynome?

Wir betrachten das folgende in Haskell-Syntax gegebene Programm:

data Nat =
$$Z \mid S$$
 Nat

$$x + Z = x$$

$$x + (Sy) = S(x + y)$$

$$dZ = Z$$

$$d(Sx) = S(S(dx))$$

$$qZ = Z$$

$$q(Sx) = qx + S(dx)$$

3. Können wir also schließen, dass jedes aus den obigen Funktionen zusammengesetzte Programm terminierend sein wird? Wird die Termination eines solchen Programmes davon abhängen, ob eine strikte oder eine nicht-strikte Auswertungsstrategie verwendet wird?