### Friedrich-Alexander-Universität Technische Fakultät



# Theorie der Programmierung

Übung 06 - der (ungetypte)  $\lambda$ -Kalkül II

**Leon Vatthauer** 

5. Juni 2023

### **Church-Numerale**



Wir betrachten erneut die Church-Kodierung natürlicher Zahlen vom vorigen Übungsblatt:

$$\lceil n \rceil := \lambda f \ a. \ \underbrace{f(f(f(\ldots f \ a)))}_{n}$$

mit einheitlicher Kodierung

zero = 
$$\lambda$$
 f a. a  
succ n =  $\lambda$  f a. f (n f a)

sowie den Operationen add und mult mit der entsprechenden Semantik.

**Notation:** Von nun an schreiben wir s + t und s \* t anstelle von add s t und mult s t und verwenden die  $\beta\delta$ -Regeln

$$\lceil n \rceil + \lceil m \rceil \to_{\beta\delta}^* \lceil n + m \rceil$$

$$\lceil n \rceil + \lceil m \rceil \rightarrow_{\beta\delta}^* \lceil n + m \rceil \qquad \qquad \lceil n \rceil * \lceil m \rceil \rightarrow_{\beta\delta}^* \lceil n \cdot m \rceil$$

# Aufgabe 1.1



#### Church-Kodierung von Booleans

Boolesche Wahrheitswerte werden als  $\lambda$ -Terme wie folgt definiert:

$$true = \lambda x y. x$$
  
 $false = \lambda x y. y$   
 $ite = \lambda b x y. b x y$ 

Zeigen Sie, das für alle  $\lambda$ -Terme s und t gilt:

ite true s 
$$t \to_{\beta\delta}^* s$$

ite false s 
$$t \to_{\beta\delta}^* t$$

# Aufgabe 1.2



#### Church-Kodierung von Booleans

Boolesche Wahrheitswerte werden als  $\lambda$ -Terme wie folgt definiert:

$$true = \lambda x y. x$$
  
 $false = \lambda x y. y$   
 $ite = \lambda b x y. b x y$ 

Vervollständigen Sie die folgenden Funktionsdefinitionen so, dass sie (unter normaler Reduktion) boolesche Negation, exklusives Oder und Implikation berechnen:

$$not b = \dots$$
  
 $xor b1 b2 = \dots$   
 $imp b1 b2 = \dots$ 

**Notation:** Von nun an schreiben wir "if s then t else u" anstelle von "ite s t u"

# Aufgabe 2



#### **Rekursive Definitionen**

In den meisten funktionalen Programmiersprachen sind *rekursive* Funktionsdefinitionen zulässig, das heißt, die definierte Funktion darf auf der rechten Seite einer solchen Funktionsdefinition vorkommen. Rekursive Funktionsdefinitionen entsprechen - wie in Übung 2, Blatt 5 -  $\delta$ -Reduktionen.

**Hinweis.** Nehmen Sie an, dass die Subtraktion von natürlichen Zahlen (in Form von Church-Numeralen) im  $\lambda$ -Kalkül darstellbar ist, d.h. für  $n \geq 1$  gilt  $\lceil n \rceil - \lceil 1 \rceil \to_{\beta\delta}^* \lceil n - 1 \rceil$ , und dass ebenso die üblichen Vergleichsoperationen möglich sind, d.h.  $\lceil n \rceil \leq \lceil 1 \rceil \leftrightarrow_{\beta\delta}^* true$ , wenn  $n \leq 1$  usw. Siehe dazu Aufgabe 4.

L. Vatthauer fau-beamer 5. Juni 2023 5/13

# Aufgabe 2.1



#### **Rekursive Definitionen**

Wir betrachten die folgende rekursive Funktion:

fact 
$$n = if n \leq \lceil 1 \rceil$$
 then  $\lceil 1 \rceil$  else  $n * (fact  $(n - \lceil 1 \rceil))$$ 

Zeigen Sie, dass  $fact \lceil 3 \rceil \rightarrow_{\beta \delta}^* \lceil 6 \rceil$ .

#### Hinweis

$$\lceil n \rceil - \lceil 1 \rceil \to_{\beta\delta}^* \lceil n - 1 \rceil \text{ für } n \ge 1$$

$$\lceil n \rceil \le \lceil m \rceil \leftrightarrow_{\beta\delta}^* \begin{cases} true & \text{falls } n \le m \\ false & \text{sonst} \end{cases}$$

$$\lceil n \rceil == \lceil m \rceil \leftrightarrow_{\beta\delta}^* \begin{cases} true & \text{falls } n = m \\ false & \text{sonst} \end{cases}$$

# Aufgabe 2.2



#### **Rekursive Definitionen**

Schreiben Sie eine rekursive Funktion *odd*, sodass:

$$odd \lceil n \rceil = \begin{cases} true & \text{falls } n \text{ ungerade} \\ false & \text{sonst} \end{cases}$$

#### Hinweis

$$\lceil n \rceil - \lceil 1 \rceil o_{eta\delta}^* \lceil n - 1 \rceil$$
 für  $n \geq 1$ 

$$\lceil n \rceil \leq \lceil m \rceil \leftrightarrow_{\beta\delta}^* \begin{cases} \textit{true} & \textit{falls } n \leq m \\ \textit{false} & \textit{sonst} \end{cases}$$

$$\lceil n \rceil == \lceil m \rceil \leftrightarrow_{\beta\delta}^* \begin{cases} true & \text{falls } n = m \\ false & \text{sonst} \end{cases}$$

# Aufgabe 2.3



#### **Rekursive Definitionen**

Schreiben Sie eine rekursive Funktion halve, sodass:

$$(\lceil 2 \rceil * \text{halve } \lceil n \rceil) + (\text{if odd } \lceil n \rceil \text{ then } \lceil 1 \rceil \text{ else } \lceil 0 \rceil) \rightarrow_{\beta\delta}^* \lceil n \rceil$$

#### Hinweis

$$\lceil n \rceil - \lceil 1 \rceil \rightarrow_{\beta\delta}^* \lceil n - 1 \rceil$$
 für  $n \ge 1$ 

$$\lceil n \rceil \leq \lceil m \rceil \leftrightarrow_{\beta\delta}^* \begin{cases} \textit{true} & \textit{falls } n \leq m \\ \textit{false} & \textit{sonst} \end{cases}$$

$$\lceil n \rceil == \lceil m \rceil \leftrightarrow_{\beta\delta}^* \begin{cases} true & \text{falls } n = m \\ false & \text{sonst} \end{cases}$$

### Aufgabe 3



#### Auswertungsstrategien

In der Vorlesung haben Sie verschiedene Reduktionsstrategien für den ungetypten  $\lambda$ -Kalkül kennengelernt. Diese unterscheiden sich hauptsächlich in den Zeitpunkten, zu denen  $\beta$ -Redexe *kontrahiert* werden, also wann in einem Term die  $\beta$ -Regel angewandt wird.

### Applikative Reduktion $\rightarrow_a$

- $(\lambda x.t) s \rightarrow_a t[s/x]$ , wenn t und s normal
- $\lambda x.t \rightarrow_a \lambda x.t'$ , wenn  $t \rightarrow_a t'$
- $t s \rightarrow_a t' s$ , wenn  $t \rightarrow_a t'$
- $t s \rightarrow_a t s'$ , wenn  $s \rightarrow_a s'$  und t normal

#### Normale Reduktion $\rightarrow_n$

- $(\lambda x.t) s \rightarrow_n t[s/x]$
- $\lambda x.t \rightarrow_n \lambda x.t'$ , wenn  $t \rightarrow_n t'$
- $t s \rightarrow_n t' s$ , wenn  $t \rightarrow_n t'$  und t keine  $\lambda$ -Abstraktion
- $t s \rightarrow_n t s'$ , wenn  $s \rightarrow_n s'$  und t normal und keine  $\lambda$ -Abstraktion

# Aufgabe 3.1



#### Auswertungsstrategien

#### Welcher Redex im $\lambda$ -Term

(a)  $(\lambda x.\lambda y. y (\lambda z. x)) (u u) (\lambda v. v ((\lambda w. w) (\lambda w. w)))$ 

(b)  $(\lambda u. u (\lambda y. z)) (\lambda x. x ((\lambda v. v) w))$ 

muss nicht kontrahiert werden, um die Normalform zu erreichen? Reduzieren Sie den Term durch  $\beta\delta$ -Reduktion zur Normalform, ohne diesen Redex zu kontrahieren.

### Applikative Reduktion $\rightarrow_a$

- $(\lambda x.t) s \rightarrow_a t[s/x]$ , wenn t und s normal
- $\lambda x.t \rightarrow_a \lambda x.t'$ , wenn  $t \rightarrow_a t'$
- $t s \rightarrow_a t' s$ , wenn  $t \rightarrow_a t'$
- $t s \rightarrow_a t s'$ , wenn  $s \rightarrow_a s'$  und t normal

### Normale Reduktion $\rightarrow_n$

- $(\lambda x.t) s \rightarrow_n t[s/x]$
- $\lambda x.t \rightarrow_n \lambda x.t'$ , wenn  $t \rightarrow_n t'$
- $t s \rightarrow_n t' s$ , wenn  $t \rightarrow_n t'$  und t keine  $\lambda$ -Abstraktion
- $t s \rightarrow_n t s'$ , wenn  $s \rightarrow_n s'$  und t normal und keine  $\lambda$ -Abstraktion

### Aufgabe 3.2



#### Auswertungsstrategien

Wir schreiben wie aus der Vorlesung bekannt  $I = (\lambda x. x)$  und  $\Omega = (\lambda x. x x)$ . Reduzieren Sie den Term  $(\lambda f. f I(\Omega \Omega))(\lambda x y. x x)$  mittels

- (a) applikativer Reduktion,
- (b) normaler Reduktion.

Unterstreichen Sie in jedem Schritt den zu reduzierenden Redex. Betrachten Sie in dieser Aufgabe  $\delta$ -Reduktion als explizite Schritte!

| Applikative Reduktion $\rightarrow_a$                                  | Normale Reduktion $\rightarrow_n$                                                                      |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| • $(\lambda x.t) s \rightarrow_a t[s/x]$ , wenn $t$ und $s$ normal     | • $(\lambda x.t) s \rightarrow_n t[s/x]$                                                               |
| • $\lambda x.t \rightarrow_a \lambda x.t'$ , wenn $t \rightarrow_a t'$ | • $\lambda x.t \rightarrow_n \lambda x.t'$ , wenn $t \rightarrow_n t'$                                 |
| • $t s \rightarrow_a t' s$ , wenn $t \rightarrow_a t'$                 | • $t s \rightarrow_n t' s$ , wenn $t \rightarrow_n t'$ und $t$ keine $\lambda$ -Abstraktion            |
| • $t s \rightarrow_a t s'$ , wenn $s \rightarrow_a s'$ und $t$ normal  | • $t s \rightarrow_n t s'$ , wenn $s \rightarrow_n s'$ und $t$ normal und keine $\lambda$ -Abstraktion |

### Aufgabe 3.3 a)



#### Auswertungsstrategien

Man erinnere sich an folgende auf Church-Kodierungen definierten Funktionen:

-- Allgemein -- Church-Booleans twice = 
$$\lambda f x$$
. true =  $\lambda x y$ .  $x$  f (f x) false =  $\lambda x y$ .  $y$  
-- Church-Paare pair =  $\lambda$  a b select. select a b fst =  $\lambda$  p. p ( $\lambda x y$ . x) snd =  $\lambda$  p. p ( $\lambda x y$ . y)

Geben Sie die ersten fünf  $\beta\delta$ -Reduktionsschritte des Terms

```
twice fst (pair (pair true false) true)
```

unter **a) normaler** und b) applikativer Reduktion an. Markieren Sie (durch Unterstreichen) in jedem Schritt den zu reduzierenden Redex.

#### Normale Reduktion $\rightarrow_n$

- $(\lambda x.t) s \rightarrow_n t[s/x]$
- $\lambda x.t \rightarrow_n \lambda x.t'$ , wenn  $t \rightarrow_n t'$
- $t s \rightarrow_n t' s$ , wenn  $t \rightarrow_n t'$  und t keine  $\lambda$ -Abstraktion
- $t s \rightarrow_n t s'$ , wenn  $s \rightarrow_n s'$  und t normal und keine  $\lambda$ -Abstraktion

### Aufgabe 3.3 b)



#### Auswertungsstrategien

Man erinnere sich an folgende auf Church-Kodierungen definierten Funktionen:

-- Allgemein -- Church-Booleans twice = 
$$\lambda f x$$
. true =  $\lambda x y$ .  $x$  f (f x) false =  $\lambda x y$ .  $y$  
-- Church-Paare pair =  $\lambda$  a b select. select a b fst =  $\lambda$  p. p ( $\lambda x y$ . x) snd =  $\lambda$  p. p ( $\lambda x y$ . y)

Geben Sie die ersten fünf  $\beta\delta$ -Reduktionsschritte des Terms

```
twice fst (pair (pair true false) true)
```

unter a) normaler und **b) applikativer** Reduktion an. Markieren Sie (durch Unterstreichen) in jedem Schritt den zu reduzierenden Redex.

#### Applikative Reduktion $\rightarrow_a$

- $(\lambda x.t) s \rightarrow_a t[s/x]$ , wenn t und s normal
- $\lambda x.t \rightarrow_a \lambda x.t'$ , wenn  $t \rightarrow_a t'$
- $t s \rightarrow_a t' s$ , wenn  $t \rightarrow_a t'$
- $t s \rightarrow_a t s'$ , wenn  $s \rightarrow_a s'$  und t normal