Friedrich-Alexander-Universität Technische Fakultät

Theorie der Programmierung

Übung 04 - Konfluenz und kritische Paare

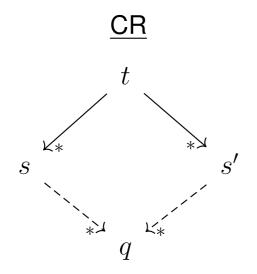
Leon Vatthauer

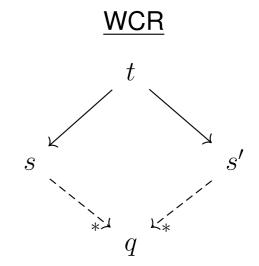
15. Mai 2023

Definitionen

Sei T ein TES.

- 1. Terme s, s' heißen **zusammenführbar** (zf.), wenn ein q existiert, sodass $s \to^* q$ und $s' \to^* q$
- 2. T heißt konfluent (CR), wenn für alle Terme t, s, s' mit $t \to^* s, t \to^* s'$ die Terme s, s' zf. sind.
- 3. T heißt lokal konfluent (WCR), wenn für alle Terme t, s, s' mit $t \to s, t \to s'$ die Terme s, s' zf. sind.





Newman's Lemma und kritische Paare

Newman's Lemma

 $SN \wedge WCR \Rightarrow CR$

Kritisches Paar

Betrachte zwei Regeln $l_1 \rightarrow_0 r_1$ und $l_2 \rightarrow_0 r_2$ mit $FV(l_1) \cap FV(l_2) = \emptyset$

(ggf. durch Umbenennung der Variablen).

Finde einen Term (*nicht nur Variable!*) mit $l_1 = C(t)$, sodass $\sigma = mgu(t, l_2)$.

Dann ist $(r_1\sigma, C(r_2)\sigma)$ ein kritisches Paar.

Triviales kritisches Paar

Ein kritisches Paar $(r_1\sigma, C(r_2)\sigma)$ heißt *trivial*, wenn die Ersetzungsregeln bis auf Umbenennung gleich sind und $C(\cdot) = (\cdot)$

Critical Pair Lemma

Ein Termersetzungssystem T ist genau dann lokal konfluent (WCR), wenn in T alle (nicht triviale) kritische Paare zf. sind.

Aufgabe 1

Kritische Paare berechnen

Wir betrachten erneut das Termersetzungssystem aus Blatt 2, Aufgabe 1:

$$A \cdot x \to_0 B \cdot (C \cdot x) \tag{1}$$

$$C \cdot (D \cdot x) \to_0 B \cdot (C \cdot x) \tag{2}$$

$$B \cdot (x \cdot y) \to_0 A \cdot (D \cdot x) \tag{3}$$

$$B \cdot (B \cdot x) \to_0 D \cdot x \tag{4}$$

Bestimmen Sie nun alle kritischen Paare des Systems und geben Sie dazu jeweils die involvierten Regeln sowie den entsprechenden allgemeinsten Unifikator an.

Kritisches Paar

Betrachte zwei Regeln $l_1 \to_0 r_1$ und $l_2 \to_0 r_2$ mit $FV(l_1) \cap FV(l_2) = \emptyset$

(ggf. durch Umbenennung der Variablen).

Finde einen Term (*nicht nur Variable!*) mit $l_1 = C(t)$, sodass $\sigma = mgu(t, l_2)$.

Dann ist $(r_1\sigma, C(r_2)\sigma)$ ein kritisches Paar.

Aufgabe 2

Konfluenz mittels Newman's Lemma

Wir betrachten erneut das Termersetzungssystem aus Blatt 3, Übung 1:

$$x \odot (y \oplus z) \rightarrow_0 (x \odot y) \oplus (x \odot z)$$
 (5)

$$(x \oplus y) \oplus z \to_0 x \oplus (y \oplus z) \tag{6}$$

Nun möchten wir zeigen, dass es konfluent ist. Da wir bereits gezeigt haben, dass das System SN ist, genügt es nach Newman's Lemma zu zeigen, dass es *lokal konfluent* ist. Ihre Aufgabe ist es also, die lokale Konfluenz des Systems zu zeigen, d.h. alle kritischen Paare des

Systems zu bestimmen und anschließend für jedes Paar zu zeigen, dass es zusammengeführt werden kann.

Kritisches Paar

Betrachte zwei Regeln $l_1 \to_0 r_1$ und $l_2 \to_0 r_2$ mit $FV(l_1) \cap FV(l_2) = \emptyset$

(ggf. durch Umbenennung der Variablen).

Finde einen Term (*nicht nur Variable!*) mit $l_1 = C(t)$, sodass $\sigma = mgu(t, l_2)$.

Dann ist $(r_1\sigma, C(r_2)\sigma)$ ein kritisches Paar.