
GPGPU for Accelerated GRAPPA Autocalibration in
Magnetic Resonance Imaging

Studienarbeit im Fach Informatik

vorgelegt von

Matthias Schneider

geb. am 17. Oktober 1984 in Aachen

angefertigt am

Institut für Informatik

Lehrstuhl für Graphische Datenverarbeitung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Quirin Meyer, Frank Enders

Betreuender Hochschullehrer: Prof. Dr. Günther Greiner

Beginn der Arbeit: 01. September 2007

Abgabe der Arbeit: 01. April 2008

ii

Contents

1 Introduction 1

1.1 Related Work . 2

1.2 Contributions . 2

1.3 Outline . 3

2 Magnetic Resonance Imaging 5

2.1 Overview and History . 5

2.2 MR Physics . 6

2.2.1 Fundamentals of Spin Physics . 6

2.2.2 Precession . 8

2.2.3 RF Pulses and Resonance Condition . 9

2.2.4 MR Signal . 9

2.2.5 Spin Relaxation . 11

2.2.6 Spin Echo . 12

2.3 Image Reconstruction . 14

2.3.1 Spacial Allocation and Slices . 14

2.3.2 Frequency and Phase Encoding . 15

2.3.3 Pulse Sequence . 17

2.4 Contrast Techniques . 18

2.5 Parallel Acquisition Techniques . 20

2.5.1 Motivation . 20

iii

CONTENTS

2.5.2 Reconstruction in Image Domain . 22

2.5.3 Reconstruction in k-space . 24

2.6 The GRAPPA Algorithm in Detail . 25

2.6.1 Reconstruction of k-space . 25

2.6.2 Autocalibration . 27

2.6.3 Further Development . 30

2.7 Imaging Hardware . 31

3 General-Purpose Computing on GPUs 33

3.1 Introduction . 33

3.1.1 Why GPUs for General-Purpose Computing? . 33

3.1.2 Limitations and Requirements . 35

3.2 Programmability of GPUs . 35

3.2.1 Graphics Pipeline . 35

3.2.2 High-Level Languages . 36

3.3 Compute Unified Device Architecture . 37

3.3.1 Overview. .38

3.3.2 Programming Model . 38

3.3.3 Execution Model . 39

3.3.4 Memory Model . 40

3.3.5 Hardware . 42

3.3.6 Designing Parallel Algorithms . 42

3.3.7 Performance Aspects . 43

3.4 GPGPU in Practice . 46

4 GPGPU for GRAPPA Autocalibration 47

4.1 Autocalibration Algorithm in Practice . 47

4.1.1 Basic Approach . 48

iv

CONTENTS

4.1.2 Improved Approach . 50

4.1.3 Computational Costs and Complexity . 54

4.2 Matrix Multiplication. .57

4.2.1 Basic Approach . 57

4.2.2 Improved Kernels . 60

4.2.3 CUBLAS . 66

4.2.4 Special case . 68

4.3 Initialization and Normalization . 70

4.3.1 Initialization . 70

4.3.2 Normalization . 71

4.4 Entire Autocalibration Stage . 74

5 Results 77

5.1 Matrix Multiplication. .78

5.2 Matrix Inversion . 82

5.3 Entire Autocalibration Stage . 85

5.3.1 Standalone Autocalibration . 85

5.3.2 Integrated Autocalibration . 90

5.3.3 Computational Error .92

6 Conclusion 95

6.1 Summary . 95

6.2 Future Work . 96

6.3 Final Remarks on CUDA . 97

A Notation and Preliminaries 103

A.1 Matrix Structure . 103

A.2 Matrices in Memory . 103

v

CONTENTS

A.3 Segmented Matrices .104

A.4 Implicit Variables . 105

List of Acronyms 107

List of Symbols 109

Bibliography 111

vi

List of Figures

2.1 Magnetic Effect of Spinning Proton [29] . 7

2.2 Voxel Magnetization [29] . 7

2.3 Spin Precession [29] . 8

2.4 Influence of 90 Degree RF Pulse on Spin Precession [29] 10

2.5 Course of MR Signal [29] . 11

2.6 Tissue Specific T1 and T2 [29] . 12

2.7 Spin Echo [29] . 13

2.8 Gradients for Slice Selection [29] . 15

2.9 Frequency Encoding and Decoding [29] . 16

2.10 Pulse Diagram [29] . 18

2.11 Contrast Weighting [29] . 19

2.12 Basic pMRI Concepts [9] . 22

2.13 SENSE Reconstruction Scheme [3] . 23

2.14 GRAPPA at a Glance . 26

2.15 GRAPPA Reconstruction Scheme . 28

3.1 Trend of Peak Performance [78] . 34

3.2 Graphics Pipeline . 36

3.3 CUDA Memory Model . 41

4.1 Matrix Structure in Basic GRAPPA Autocalibration 49

4.2 Matrix Structure in Improved GRAPPA Autocalibration 52

vii

LIST OF FIGURES

4.3 Basic Scheme for Matrix Multiplication . 58

4.4 Adjusted Scheme for Matrix Multiplication . 60

4.5 Optimized Scheme for Matrix Multiplication . 67

5.1 Comparison of mmul[1-4] and cublasCgemm() 78

5.2 Comparison of mmul[4,5], cublasCgemm(), and Intel MKL 80

5.3 Comparison of mmul[4,5], cublasCgemm(), and Intel MKL 81

5.4 Results for findWs[GPU] Depending on Ncol . 86

5.5 Breakdown of Overall findWs[GPU] Execution Time 87

5.6 Effective Memory Throughput During Initialization of A and B 88

5.7 Results for findWs[GPU] Depending on Nc . 89

5.8 Comparison of GPU to CPU for Practical Test Cases 91

5.9 Outlook on Future Number of Channels . 92

viii

List of Tables

2.1 Parameter Choice for Gradient Echo Sequences [29] 20

3.1 Comparison of Recent GPUs and CPUs . 34

3.2 GPU Shading Language Overview . 36

3.3 Overview of GPGPU High-Level Languages . 37

4.1 Matrix Dimensions in GRAPPA Autocalibration 56

4.2 Computational Complexity of GRAPPA Autocalibration 56

4.3 Access Pattern with Bank Conflicts . 63

4.4 Conflict-Free Access Pattern . 63

4.5 Dispatching for Initialization of A and B . 71

5.1 Default Values of GRAPPA Parameters . 86

5.2 GPU Memory Requirements of findWsGPU . 90

A.1 Accessing Matrices . 104

A.2 Index and Dimension Tags for CUDA Threads . 105

ix

LIST OF TABLES

x

List of Algorithms and Listings

3.1 Launching a CUDA Kernel . 40

4.1 Steps of GRAPPA Autocalibration Stage . 47

4.2 GRAPPA Autocalibration (findWs) . 50

4.3 Improved GRAPPA Autocalibration (findWsImproved) 53

4.4 Basic Approach for Matrix Multiplication (mmul1) 59

4.5 Improved Approach for Matrix Multiplication (mmul2) 61

4.6 Improved Approach for Matrix Multiplication (mmul3) 64

4.7 Improved Approach for Matrix Multiplication (mmul4) 65

4.8 Improved Matrix Multiplication Z = X ·XH (mmul5) 69

4.9 Matrix Transpose (mTrans) . 73

4.10 Matrix Normalization (mNorm) . 73

4.11 GRAPPA Autocalibration Pipeline Using GPGPU (findWsGPU) 74

5.1 Matlab Implementation for Outer Product Cholesky Decomposition (cholDec) . . . 83

xi

LIST OF ALGORITHMS AND LISTINGS

xii

Chapter 1

Introduction

The success story of Magnetic Resonance Imaging (MRI) dates back to 1946 when the phenomenon

of Magnetic Resonance (MR) was discovered. From that time on, MRI has emerged as a powerful

modality in medical imaging.1 Quite a lot of research has been carried out to further and further

improve hardware performance and image quality. MRI in its infancy had to overcome difficulties

particularly concerned with the generation of strong, homogeneous, and static magnetic fields and

gradients. Meanwhile, the tide has turned and algorithms for image reconstruction have reached a

bottleneck for clinical real-time applications in particular. Current MR systems use ingenious paral-

lel image acquisition techniques such as Generalized Autocalibrating Partially Parallel Acquisitions

(GRAPPA) involving computationally intensive reconstruction algorithms. As a result, the acquisition

time is reduced at the expense of reconstruction time limited by the computational power provided by

CPUs.

One way to improve algorithmic performance, that has become increasingly popular in recent

years, is to take advantage of the computational power of Graphics Processing Units (GPUs) for

general-purpose computations. The increase of the theoretical GPU peak performance has exceeded

by far the augmentation of CPU performance during the last years. This trend is doubtlessly pushed

forward by the game industry in particular because of more and more detailed and realistic real-time

graphics in videogames. Modern graphics hardware is equipped with 16 to 64 multiprocessors simul-

taneously executing single instructions on multiple data and provides “enough” on-board memory

1Approximately 10,000 MRI units worldwide and 75 million MRI scans performed per year [32].

1

CHAPTER 1. INTRODUCTION

(512 MB up to 1.5 GB) to store large data sets. Since 2006, the general programmability of GPUs has

largely increased, which makes them also suitable for science and engineering applications.

1.1 Related Work

Medical imaging was indeed one of the first general-purpose applications for GPUs. Research has pri-

marily focused on accelerating reconstruction algorithms for Computed Tomography (CT), especially

the Filtered Backprojection and the Fast Fourier Transform (FFT) [13,50,51,75]. Besides GPUs, there

are also some promising approaches based on other architectures such as Field Programmable Gate

Arrays (FPGAs) [81] and the Cell Broadband Engine [74].

Algorithms for Filtered Backprojection and FFT also play a crucial role in MRI reconstruction and

have been implemented for GPUs resulting in speedups between two and nine [79, 76]. Recently, an

advanced least-squares reconstruction algorithm operating on non-Cartesian scan data has been accel-

erated by state-of-the-art graphics hardware. Experimental optimization techniques achieve speedup

factors up to 120, which shortens the reconstruction time from six hours to three minutes [78].

1.2 Contributions

This thesis describes how to leverage the computational power of recent NVIDIA GPUs supporting

the Compute Unified Device Architecture (CUDA) for the GRAPPA autocallibration stage that takes

25% of the total reconstruction time on CPUs. The computationally most intensive and hence most

time-consuming part of the reconstruction algorithm is to solve large, overdetermined linear equa-

tion systems. The involved complex-valued matrix multiplications usually make up more than 80%

on CPU. We present different CUDA-based implementations to accelerate this task that can be paral-

lelized to map well to the underlying parallel hardware architecture. Our optimized kernel for matrix

multiplication on GPUs performs eleven times faster than the highly optimized Intel Math Kernel Li-

brary (MKL) and even up to 17 times faster for special cases.

For current configurations, the GPU-accelerated parts of the GRAPPA Autocalibration stage perform

30 to 45 times faster compared to the the CPU-based implementation that is in use in MR systems

of Siemens Medical Solutions for some years now. The reconstruction time is considerably reduced

2

1.3. OUTLINE

so that the application of future coil arrays with up to 128 channels is achievable. All in all, the

GPU-powered GRAPPA autocalibration now only makes up two to three percent of the overall recon-

struction time.

1.3 Outline

This thesis is structured as follows:

Chapter 2 provides an overview of Magnetic Resonance Imaging including different imaging and

reconstruction techniques, particularly GRAPPA.

Chapter 3 describes the concept of GPGPU with focus on NVIDIA’s CUDA.

Chapter 4 demonstrates how GPGPU can be used for the GRAPPA autocalibration stage including

several optimization techniques.

Chapter 5 evaluates different benchmark tests and compares our improved GPU-accelerated ap-

proach to present CPU-powered implementations.

Chapter 6 concludes the results of this thesis and gives an outlook to future work.

Please also note Appendix A for notation and preliminaries.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Magnetic Resonance Imaging

2.1 Overview and History

Just as the well-known ultrasonic and X-ray examination, Magnetic Resonance Imaging (MRI) is a

non-invasive imaging technique primarily used for medical purposes. It is based on the principles of

Nuclear Magnetic Resonance (NMR). In 1946, Felix Bloch [6, 7] and Edward Purcell [72] indepen-

dently discovered the phenomenon of Magnetic Resonance (MR) and used it for chemical and physical

molecular analysis. For their invention they were awarded the Nobel Prize in Physics 1952 [52].

It was Paul Lauterbur who suggested using NMR to discriminate two different mediums in 1973.

Four years later, his proposal was finally refined by Peter Mansfield to a fast imaging technique. Both

scientists were awarded the Nobel Price in Medicine 2003 [53].

MRI is an incredibly powerful modality and a widely-used diagnostic technique for medical pur-

poses. Tissue structures and anatomic details can be displayed in a series of high quality slice images

of any oblique plane through the human body, without the patient ever moving [18]. This is a major

advantage of MRI compared to X-ray CT scanners that are, above all, limited to one plane (axial,

coronal or sagital). The outcome of this is both a minimized examination time and precise, satisfac-

tory diagnostics.

In contrast to radiotechnology, MRI works with non-ionizing radiation of much lower energy and

achieves excellent soft tissue contrast at a higher resolution compared to ultrasonic imaging tech-

niques [8, 29]. Due to its brilliant image quality and soft tissue resolution, MRI is used, among other

5

CHAPTER 2. MAGNETIC RESONANCE IMAGING

things, for comprehensive imaging of the heart, contrast-enhanced angiography, proton spectroscopy,

diffusion and perfusion imaging, as well as in gastroenterology, orthopedics, and neurology (neuro-

imaging) [29].

Medical examinations using an MR scanner proceed in several steps: First of all, the patient is

positioned in the magnet of the device that exposes his body to a strong magnetic field. In the course

of the examination the atomic nuclei of the patient’s body are stimulated to emit high-frequency

radiation as described in Chapter 2.2.1. This measurable signal is captured by an appropriate receiver

and is finally processed within the image reconstruction stage resulting in a slice image of the body.

Understanding the entire functional principle of MRI in depth is no bed of roses, as two Nobel

Prizes already suggest. Nevertheless, some fundamentals of nuclear physics are needed to get an idea

of the basic principles of MRI.

2.2 MR Physics

MRI uses the magnetic properties of hydrogen nuclei for imaging. Hydrogen is the chemical element

with the least complex nucleus consisting of one single proton with a positive electrical charge. As

it turns out, this is the element with the strongest magnetic resonance signal an hence particularly

suitable for MRI. Fortunately, hydrogen, as an elementary component of fat and water, is the most

prevalent element in the human body.

2.2.1 Fundamentals of Spin Physics

Protons, electrons, and neutrons possess a quantum-mechanical characteristic referred to as spin. We

can imagine this fundamental property as a never-ending rotation of a sphere, even if the proton

actually doesn’t spin itself. Moreover, the spin causes a nucleus to have a magnetic effect comparable

to a tiny bar magnet with a magnetic north (N) and south (S) pole as shown in Figure 2.1. The spin

is a unique, directional quantity of a nucleus. It can be characterized by a vector of certain length but

variable direction (from S to N) corresponding to the rotation axis.

However, MRI does not measure the individual spin of a single nucleus but the effect of an entire

collection (ensemble) of spins within a volume element (voxel) of the human body. According to the

6

2.2. MR PHYSICS

Figure 2.1: Magnetic Effect of Spinning Proton

Pauli Exclusion Principle [69], the overall effect, that is observable from the outside, results from

superimposition, i.e. spatial addition of the single nuclei spin vectors.

In field-free space without an external magnetic field, the spin effects cancel out each other as they are

randomly oriented within the ensemble. Consequently, it appears to be macroscopically non-magnetic.

Exposing the voxel to a static external magnetic field, however, a force acts on the spins that are

oriented longitudinally to the magnetic field. In contrast to the comparable model of bar magnets,

the spins behave differently. They align partially parallel (spin up) and partially anti-parallel (spin

down) to the field. These two states, the protons can occupy, correspond to energy states separated

by a quantum of energy. The spins distribute almost equally but with a small majority of excess

spins (spin up) of lower energy. Macroscopically considered, this state of equilibrium leads to a weak

magnetization (M) of the voxel as illustrated in Figure 2.2.

Figure 2.2: Voxel Magnetization

The number of excess spins rises with the strength of the external magnetic field, the proton den-

sity within the voxel, and also depends on the temperature. There are approximately six excess spins

per one million protons for instance at body temperature and a field strength of one Tesla (T). Fortu-

7

CHAPTER 2. MAGNETIC RESONANCE IMAGING

nately, a cubic voxel of water with an edge length s = 1mm contains approximately 6.7 ·1019 hydrogen

protons, which results in 4.0 · 1014 (400 trillion!) excess spins. They all contribute to a macroscopic

magnetization so that the quite small amount of excess spins is by no means a drawback.

Up to now, the spin model only explains the magnetization along the field lines. For further con-

siderations, however, we necessarily have to refine this model.

2.2.2 Precession

Strictly speaking, the spins which are subject to a static magnetic field do not align exactly parallel or

anti-parallel to the field lines as stated in the previous section, but they spin like a tilted top. The lower

tip of the top stands still whereas the upper one continuously moves on a circular path. So this means,

the spin vector moves in a conic shape around the direction of the external field. This type of spinning

movement also known as precession is illustrated in Figure 2.3.

Figure 2.3: Spin Precession

The rotation speed of a precessing spin depends on the nature of the nucleus and increases with

the strength of the applied magnetic field B. This characteristic frequency is also referred to as Larmor

frequency ω with

ω = γ B , (2.1)

where γ is the gyromagnetic ratio of the nucleus (γ1H = 42.58MHz/T for hydrogen [32]).

For very strong magnetic fields as prevalent in MR systems, spins oscillate at radio frequency. The Lar-

mor frequency of hydrogen for example reaches approximately 43MHz at a magnetic field B = 1.0T

8

2.2. MR PHYSICS

and ω = 63MHz for B = 1.5T respectively.

The excess spins, thus, all precess at the same frequency about the direction of the external mag-

netic field (vertical z-axis). Nevertheless, they precess out-of-phase with a randomly distributed phase

difference in the basic state. In other words, the horizontal components transverse to the magnetic

field, i.e. parallel to the xy-plane, cancel out each other across the entire ensemble and a constant

magnetization exists only along the z-axis (see Figure 2.4a).

2.2.3 RF Pulses and Resonance Condition

We can deflect the energy equilibrium of the precessing spins in the basic state, though, by using a

suitable electro magnetic wave. This radio frequency wave is also known as RF pulse and has to fulfill

the so-called resonance condition. It states, to put it simple, that the RF pulse interferes with spins

only if its oscillating frequency matches the spins’ Larmor frequency.

The spin vectors tilt by a specific angle (flip angle) in the basic state depending on the duration and

the energy of the interfering RF pulse. Thus, they can particularly be rotated by 90 degrees into the

xy-plane or even flipped by 180 degrees into the opposite z-direction. The direction of the net mag-

netization of course changes accordingly. These two types of interfering RF pulses play an important

role in MR imaging and allow to make the spins generate an MR signal.

2.2.4 MR Signal

As mentioned before, the original longitudinal magnetization in the direction of the z-axis is rotated

into the xy-plane at the end of a 90 degree pulse (see Figure 2.4b). Since the z-components of the

rotated spin vectors neutralize each other, the longitudinal magnetization is zero. But things look

completely different after the pulse. The spins are then only exposed to the static external magnetic

field and rotate about the z-axis. Nevertheless, there is a remarkable difference compared to the basic

state: The transverse magnetization is still prevalent in the xy-plane as the spins are phase-coherent,

now. In other words, the original longitudinal magnetization is flipped by 90 degrees acting like a

rotating magnet in the xy-plane (see Figure 2.4c). According to the theory of RF induction, this rotation

produces an electric voltage in a receiver coil. The course of this voltage over time is the MR signal.

The stronger the transverse magnetization, the stronger the MR signal [29]. As shown in Figure 2.5,

9

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Figure 2.4: Spin precession before (a), at the end (b), and after (c) a 90 degree RF pulse.

10

2.2. MR PHYSICS

the shape of the signal is similar to a damped oscillation. It decays quickly after the end of the RF

pulse and is therefore also called the Free Induction Decay (FID).

Figure 2.5: Course of MR Signal over Time

2.2.5 Spin Relaxation

The spins in the interfered state return to the original state of equilibrium with longitudinal but no

transverse magnetization. This dynamic process of excited-state deactivation is called relaxation. It is

the cause of the rather quickly decay of the MR signal. Relaxation itself is mainly caused by exiguous

magnetic field fluctuations especially in the range of the Larmor frequency. This magnetic noise is

generated by molecular motion.

The transverse magnetization MXY dies down faster than the longitudinal magnetization MZ re-

grows. Both processes follow an exponential function of time that is characterized by two time con-

stants T1 for MXY and T2 for MZ, whereby T2 < T1. The time constants are defined such that the value

of the exponential function evaluated at T is 63% of the final value which is all but reached after 5T .

For the sake of completeness, it should be mentioned that the T1 process is also called spin-lattice

relaxation and the T2 process spin-spin relaxation. The difference of the two time constants mainly

results from spin-spin interactions [29]. Fortunately, the time constants T1 and T2 are tissue-specific as

illustrated in Figure 2.6. This is the reason why MR signals are well suited to generate high-contrast

MR images distinguishing different tissue types.

11

CHAPTER 2. MAGNETIC RESONANCE IMAGING

(a) Recovery of Longitudinal Magnetization MZ for B = 1.0T (T1)

(b) Decay of Transversal Magnetization MXY (T2)

Figure 2.6: Tissue Specific T1 and T2

2.2.6 Spin Echo

Considering the MR signal, it turns out that it decays much faster than actually expected according

to T2. The observed effective time constant T ∗2 results from static inhomogeneities of the external

magnetic field. They are caused by the patient’s body as well as inevitable technical inhomogeneities

of the magnet. The rule of thumb is:

T ∗2 < T2 < T1 .

Unfortunately, it is not possible to measure the first peak of the MR signal due to the strong RF pulse

that is still in effect at the beginning of the FID and would excessively affect the electromagnetic

measuring. The solution to this problem uses a little trick. If we switch on a 180 degree pulse after run

12

2.2. MR PHYSICS

time τ behind the 90 degree pulse, the so called spin echo arises and reaches its maximum after the so

called echo time TE = 2τ. This effect is illustrated in Figure 2.7.

Figure 2.7: Spin Echo

In [29] this effect is explained intuitively using “The example of the runners” on a circular track.

At the beginning of the race, all the runners toe the line. After the starter’s gun, they start running at

slightly different but constant speeds so that they run out of phase by-and-by. After a certain time τ,

the runners about-face and run back without changing their speeds. After another run time τ, they all

will simultaneously arrive at the starting line again.

The spins’ situation is indeed comparable to this example. After the 90 degree pulse, the spins are

phase-coherent. During the “race”, they run completely out-of-phase. The about-face is accomplished

by applying the 180 degree pulse after run time τ. Finally, the out-of-phase spins get back into phase.

They generate a spin echo reaching its amplitude after 2τ. The condition of equal “speeds” before and

after the about-face is also fulfilled since the inhomogeneities of the magnetic field remain the same

over time at a specific location. In other words, the spins come across the same static magnetic field

differences both before the 180 degree pulse and after it.

The generation of spin echos can even be iterated repeatedly by applying a multi-echo sequence con-

sisting of consecutive 180 degree pulses whereby the amplitudes of the spin echos decrease with T2.

13

CHAPTER 2. MAGNETIC RESONANCE IMAGING

2.3 Image Reconstruction

Different anatomical structures of the human body differ in their relaxation times leading to distinct

MR signals. Therefore, the arising MR signals during an MR examination can be used to reconstruct

medical images showing a high contrast for different tissues. For medical diagnostics, images of thin

slices at specific positions through the patient’s body are needed.

2.3.1 Spacial Allocation and Slices

The acquired MR signal results from the superimposition of all magnetic resonances in the examined

body and does not allow for spatial allocation so far. MR scanners generate a homogeneous static

magnetic filed typically by using large coils. Exposed to this field, all protons of the patient’s body

precess at a specific Larmor frequency ω0 that depends on the strength of the magnetic field according

to Equation 2.1. The described pulse technique causes each proton to generate an equal echo that

contributes to a single MR signal which is measurable from the outside yet with completely lost

spatial resolution. However, there is a simple answer to this problem: gradients.

If we spatially vary the static magnetic field B0 by switching on a gradient in the direction of the

z-axis, the Larmor frequency of the protons changes accordingly. The gradient is usually generated by

two inversely phased coils roughly sketched in Figure 2.8(a). As a result, the strength of the magnetic

field as well as the Larmor frequencies linearly increase along the gradient’s direction. An RF pulse

of frequency ω0 now excites only spins at position z0 corresponding to the Larmor frequency ω0. In

this way, a spatial region (slice) of resonating spins is selected. The associated gradient is known as

slice-selection gradient (GS).

Moreover, a certain slice thickness is needed for a signal of sufficient strength and satisfactory quality.

This task is performed for instance by an RF pulse possessing a certain frequency bandwidth ∆ω0

instead of a single frequency ω0. This ∆ω0 pulse1 selects a slice of the corresponding thickness ∆z0,

which is shown in Figure 2.8(b). Gradients even allow for selecting slice planes not only parallel to

the xy-plane, but at arbitrary and oblique positions. For this purpose, several gradients along the three

spatial axes are combined appropriately [29].

1Another way to deal with the problem is to use gradients of different slopes [29].

14

2.3. IMAGE RECONSTRUCTION

(a) (b)

Figure 2.8: Gradients for Slice Selection

This gradient-based method for slice selection reduces the dimension of the spatial problem by one

but we still have to deal with the remaining two-dimensional problem of assigning a gray value to

each pixel of the MR image.

2.3.2 Frequency and Phase Encoding

An MR image consists of many picture elements (pixels), e.g. 256×256. Each pixel of the so called

image matrix corresponds to a voxel of the selected slice. Accordingly, the pixels’ gray values can

be computed from the echo signal of the proper voxel. In order to make this calculation possible,

we need further spatial allocation of the MR signal generated by a single slice. This problem can be

solved once more by using the all-purpose tool within MRI: gradients.

The selected slice is assumed to be perpendicular to the z-axis for the moment. A gradient that is

applied in the direction of the x-axis causes the spins to precess at increasing oscillation frequencies

along the x-direction (frequency encoding). In other words, the so called frequency-encoding gradient

(GF) leads to an MR signal consisting of as many different frequencies as there are pixels in a single

row of the image matrix (256 in this case). If we apply the Fourier Transform [15], this composite

signal is divided into its components of individual frequencies and amplitudes. Based on this decom-

position of the MR signal, it is possible to assign proper gray values to the pixels of the rows within

the image matrix. This frequency encoding and decoding process is illustrated in Figure 2.9(a).

15

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Finally, there is left only the differentiation of the single rows in order to accurately localize an

individual voxel within the selected slice. For this purpose, a phase-encoding gradient (GP) is briefly

switched on in the y-direction during the time between the RF pulse and the echo. As a result, the

spins precess at different speeds until the gradient is switched off again and show different phase

shifts directly proportional to their locations along the y-axis [29]. The Fourier Transform is able

to filter out these phase shifts. All in all, the phase encoding step has to be repeated with different

phase encodings for every image row. The resulting MR signals are stored in the rows of a raw data

matrix shown in Figure 2.9(b). This matrix is also referred to as k-space and can finally be Fourier

transformed to the final grayscale MR image. Due to the different types of encoding, the x-direction

is also denoted as Read-Out Direction (RO) and the y-direction as Phase-Encoding Direction (PE).

(a) Frequency Encoding (b) k-space

Figure 2.9: Frequency Encoding and Decoding

16

2.3. IMAGE RECONSTRUCTION

2.3.3 Pulse Sequence

In order to obtain an MR image, the different pulses and gradients are put together to a pulse sequence.

Despite the enormous variety of sequences, there are in fact only two basic models: Spin Echo (SE)

and Gradient Echo (GE) sequences.

Sequences within these two different classes slightly differ in terms of contrast technique (see Chap-

ter 2.4) and imaging speed. The following example of a very simple pulse sequence in Diagram 2.10

is used to explain the main principle of pulse sequences:

Slice selection

The slice-Selection gradient GS is in effect during both the 90 degree and the 180 degree pulse

to delimit the effect of the HF pulses to a specific spatial region. As the spins are dephased by

the gradient, another rephasing gradient is switched on (short trough after the 90 degree pulse)

to rephase the spins along the slice thickness again.

Frequency encoding

The frequency-encoding gradient GF is switched on during the readout of the spin echo. Strictly

speaking, another rephasing gradient has to be included to compensate for the dephasing effect

of GF . This additional gradient is omitted in Figure 2.10 to keep things simple.

Phase encoding

The phase encoding gradient GP is used between slice selection and spin echo. The phase en-

codings differ for every row in k-space determining the number of repetitions of the sequence.

The whole pulse sequence is continuously repeated after repetition time (TR) according to the number

of raw data rows in k-space. As TE � TR, it is even possible to excite several slices consecutively

within repetition time (multislice sequence).

Other spin echo sequences use more elaborate pulse sequences that allow for accelerated MR data

acquisition. The simple spin echo sequence for example can be extended by additional 180 degree

pulses to obtain an entire series of echo signals within TE (echo train). This Fast Spin Echo Sequence

(FSE), also known as Turbo Spin Echo Sequence (TSE), significantly shortens the number of repeti-

tions and hence the acquisition time (e.g. turbo factor between 7 and 15).

17

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Figure 2.10: Pulse Diagram

An even faster acquisition method is the Echo-Planar Imaging (EPI). A single 90 degree pulse is used

to acquire an entire image. Regrettably, this technique is limited to “small” matrices (128×128) [29].

By contrast, gradient echo sequences start with an RF pulse of a smaller flip angle α and TR and TE

are chosen much smaller compared to SE sequences.

Further information and detailed explanations concerning the different types of pulse sequences can

be found for instance in [46] and [49].

2.4 Contrast Techniques

As described in Chapter 2.2.5, there are three properties of human tissue that allow for image contrast

using spin echo sequences: longitudinal relaxation time T1, transversal relaxation time T2 and proton

density ρPD (PD), i.e. the number of hydrogen protons per volume unit [29].

They all contribute to the intensity S of an MR signal that is acquired by a pulse sequence with

18

2.4. CONTRAST TECHNIQUES

repetition time TR and echo time TE according to the following equation [49]:

S∼ ρe−TE/T2
(

1− e−TR/T1
)

, where TE � T1, T2� TR .

For a suitable choice of TR and TE the signal intensity is primarily determined by one of the three tissue

parameters ρ, T1, and T2. Accordingly, there are three different types of MR images: T1-weighted, T2-

weighted, and PD-weighted images. Figure 2.11 roughly sketches the relationship between the choice

of TR and TE and the weighting of the resulting image.

Figure 2.11: Contrast weighting for different combinations of TE and TR.

For gradient echo sequences, however, the type of image contrast is determined by both TE and the

flip angle α as shown in Table 2.1. A detailed discussion of the depicted relationship can be found

in [46] and [29].

PD-weighted as well as T1-weighted images are usually used to visualize anatomical structures

as they clearly show the boundaries between different tissue types, whereas T2-weighted images es-

pecially highlight pathological tissue such as tumors [49]. Moreover, there are various techniques

19

CHAPTER 2. MAGNETIC RESONANCE IMAGING

TR TE α

T1
short short large

(40−150ms) (5−10ms) (40◦−80◦)

T ∗2
long long small

(500ms) (18−40ms) (5◦−10◦)

PD long short small
(500ms) (5−10ms) (5◦−20◦)

Table 2.1: Parameter Choice for Gradient Echo Sequences

in order to enhance the contrast of specific tissue. Therefore, ingenious pulse sequences are used to

suitably combine the image contrast effects of the tissue parameters [46].

2.5 Parallel Acquisition Techniques

2.5.1 Motivation

Apart from image contrast, the acquisition time is one of the most important considerations in clinical

applications not only because of the matter of efficiency and patient throughput but also for practical

reasons. Simple spin echo sequences take several minutes to acquire clinically feasible images, which

is much too long for a multitude of medical applications. Examinations of the breast, abdomen, or

the pelvis particularly demand a short acquisition time as there is inevitable motion of the organs in

these areas, e.g. beating of the heart, respiratory movement, or gut motility. In the late 1980s, the

invention of fast imaging sequences, such as Fast Low-Angle Shot (FLASH), EPI, and TSE met these

requirements [46].

However, the ultimate speed of the imaging techniques considered so far is limited by both techni-

cal and physiological problems. Modern MR scanners work at technical limit with field and gradient

strengths just medically justifiable as rapidly switched fields can lead to the stimulation of the periph-

eral nerve system. By reason of patient protection, gradient strength and slew rates must not exceed

certain limit values.

In order to overcome these limitations, new reconstruction techniques have been developed including

the so called Parallel Acquisition Techniques (PATs) that allow for Parallel MRI (pMRI). PATs are not

a new imaging sequence but an elaborate image reconstruction technique in order to accelerate any

20

2.5. PARALLEL ACQUISITION TECHNIQUES

existing imaging sequence without changing the scanner’s gradient system performance. Moreover, it

is applicable to (almost) any MRI sequence and maintains its contrast behavior [27]. The general idea

of PATs is to simultaneously use several receivers aligned in an array (phased array coils). The spa-

tial sensitivity information of the coil array can evidentially be used to undersample k-space, which

is equivalent to omitting some time-consuming spatial encoding steps. Therefore, the whole image

acquisition procedure is commensurately reduced by the so called acceleration factor also known as

PAT factor at the expense of more complex and time-consuming reconstruction algorithms. For the

sake of completeness, it should be mentioned that this is only possible for coils that meet certain re-

quirements concerning their sensitivity [3].

As a result of the improved time resolution, the following advantages of PATs can be distinguished:

• shortened breath-hold periods (respiratory movement)

• decreased specific absorption rate (SAR)

• allows for new clinical applications:
interventional MRI, head, thoracic, and (real-time) cardiac imaging

• reduced artefacts by reason of time-dependent effects

• reduced amount of contrast agent in angiographic applications

• alternatively: improved spatial resolution (at same acquisition time)

The undersampled k-space yet leads to fold-over distortions (aliasing) outside the coils’ Field of

View (FOV). It is the reconstruction algorithm’s task to “unfold” these images with limited FOV and

to combine them to an overall FOV image. This reconstruction is done by interpolation relying on

precomputed spatial and sensitivity information of the coils. The precalculation can either be done

by a separate scan before the actual examination or by autocalibration which results in better image

quality besides many other advantages. Unfortunately, PATs reduce the Signal-to-Noise Ratio (SNR)

by the expected factor
√

R, where R represents the acceleration factor [3].

Current pMRI techniques can be divided into three groups according to their domain of interpolation:

1. Interpolation of image data in image domain (SENSE, PILS)

2. Interpolation of raw-data in k-space (SMASH, GRAPPA)

3. Hybrid techniques (SPACE RIP) [42]

21

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Figure 2.12: Basic pMRI Concepts
The number of required phase encoding steps is reduced by omitting some k-space lines (dotted lines
in upper left image) causing aliasing artifacts in the inversely Fourier-Transformed image (top right).
The GRAPPA algorithm performs image reconstruction in k-space (bottom left), whereas SENSE
operates in the image domain to solve for the unfolded full FOV image (bottom right) [9].

2.5.2 Reconstruction in Image Domain

For now, the coils are assumed to be regularly aligned in a linear array along PE direction and to

possess a limited FOV as well as spatially localized sensitivities. As mentioned before, the accelerated

pMRI acquisition inevitably leads to aliasing in the reconstructed images. The images of each coil

show repeated subimages that can be separated, however, as long as the limited FOV is larger than

the region of sensitivity. The position of each coil in the array makes it possible to easily recover the

lost spatial information of the proper subimage. Finally, the combination of the relocated subimages

results in the desired full FOV image. This reconstruction technique is also known as Partially Parallel

Imaging with Localized Sensitivities (PILS) and achieves optimal SNR [3].

22

2.5. PARALLEL ACQUISITION TECHNIQUES

Restrictions of PILS, particularly concerning the coil configuration with localized sensitivities,

are too tight for clinical applications. A more generalized method was proposed by Pruessmann et

al. in 1999: Sensitivity Encoding (SENSE) [71] allows for more freedom in coil configuration and

sensitivities that are no longer necessarily strictly localized. Therefore, the coil images with reduced

FOV now contain sensitivity weighted information of R equidistantly distributed images assuming

Cartesian-type sampled k-space [9].

Given the full FOV image ρ and a set of Nc coils (Nc ≥ R) with known individual sensitivities Ck, the

signal intensity at a specific pixel location (x,y) in the limited FOV image Ik of coil k can be expressed

as follows [3]:

Ik(y,x) =
R

∑
l=1

Ck(yl,x)ρ(yl,x) .

For a fixed pixel location (x,y) this results in Nc equations that can be written in matrix notation as

shown in Figure 2.13.

Figure 2.13: SENSE Reconstruction Scheme in Matrix Notation

If the sensitivity matrix Ĉ is known in advance, this system of linear equations can be solved by

applying the pseudo inverse of Ĉ:

~ρ = (ĈHĈ)−1ĈH · ~I , (2.2)

23

CHAPTER 2. MAGNETIC RESONANCE IMAGING

where ĈH denotes the adjoint matrix2 of Ĉ. The computation is repeated for every pixel in the Nc

aliased coil images, which finally results in the desired full FOV image. The maximal reduction factor

R is Nc as the matrix inversion in Equation 2.2 would fail for larger values of R.

Regrettably, SENSE involves a worse SNR compared to PILS as it is additionally reduced by the so

called geometry-factor g≥ 1 depending on the particular coil configuration [71]:

SNRSENSE =
SNR full

g ·
√

R
.

Moreover, there are several enhancements such as mSENSE [80] or a generalization of SENSE that

allows for data to be sampled along arbitrary k-space trajectories [70].

2.5.3 Reconstruction in k-space

Instead of performing the interpolation of missing information in the image domain, it is possible to

recover omitted lines in k-space before the image reconstruction. One method that is based on this

consideration is the Simultaneous Acquisition of Spatial Harmonics (SMASH) introduced by Sod-

ickson and Manning in 1997 [77]. According to the Fourier theory, composite sensitivity profiles

C comp
m with sinusoidal spatial variations of order m are required to emulate the omitted phase-encoding

steps. These profiles are generated by a linear combination of previously estimated coil sensitivities

Ck(x,y) [3]:

C comp
m (y,x) =

Nc

∑
k=1

w(m)
k ·Ck(y,x)∼= e im∆kyy , (2.3)

where ∆ky =
2π

FOV
.

The interpolation weights w(m)
k can be calculated by a least square fit. This set of weights is finally

used to derive composite shifted k-space lines Scomp(ky + m∆ky) from simultaneously measured coil

signals Sk(ky):

Scomp(ky +m∆ky) =
Nc

∑
k=1

w(m)
k ·Sk(ky) .

2The operator •H is also known as conjugate or Hermitian transpose.

24

2.6. THE GRAPPA ALGORITHM IN DETAIL

Furthermore, the resulting image quality highly depends on the accuracy of the generated spatial

harmonics in Equation 2.3.

The coil sensitivities can also be derived by autocalibration as it is done in AUTO-SMASH [39].

Additionally acquired R−1 autocalibration lines S ACS
k in the center of the k-space are used to calculate

the reconstruction coefficients:

Scomp(ky +m∆ky) =
Nc

∑
k=1

S ACS
k (ky +m∆ky) ·Sk(ky) =

Nc

∑
k=1

w(m)
k ·Sk(ky) . (2.4)

It is even possible to acquire more ACS lines than actually needed in order to reduce the influence

of noise and coil profile imperfections. This is done in Variable-Density AUTO-SMASH (VD-AUTO-

SMASH) [26] and results in a more robust image reconstruction.

Another SMASH-type reconstruction technique is GRAPPA that is discussed in the next section

in more detail as it is an essential part of this thesis.

2.6 The GRAPPA Algorithm in Detail

The concept of Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) was introduced

by Griswold in 2002 [22] as a more general view of (VD-)AUTO-SMASH and yields a better overall

image quality due to improved artifact suppression. The most significant difference is the way miss-

ing k-space lines are reconstructed. Figure 2.14 outlines the entire GRAPPA reconstruction that is

described in the following.

2.6.1 Reconstruction of k-space

In contrast to (VD-)AUTO-SMASH, the GRAPPA reconstruction recovers the missing k-space lines

for all channels, which results in an uncombined image per coil and not only a single composite signal

as shown in Equation 2.4. The reconstruction of a single missing k-space element within a coil is based

on several blocks of k-space data from all channels. As shown in Figure 2.15, a block is defined as

a single acquired element followed by (R−1) omitted entries in the same image column, i.e. with

25

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Figure 2.14: GRAPPA at a Glance
Based on the Auto-Calibration Signal (ACS), the autocalibration stage computes fitting coefficients
that are used to reconstruct omitted k-space lines (dashed) for each coil (Nc = 3 in this case). The
inverse Fourier Transform of the reconstructed k-space generates a set of uncombined images that are
recombined to the final slice image.

26

2.6. THE GRAPPA ALGORITHM IN DETAIL

same RO-coordinate. Reconstructing an entry in line ky + m∆ky and column x of target coil j can be

represented as [22]:

S j(ky +m∆ky,x) =
Nc

∑
k=1

Nb−1

∑
b=0

w(m)
j,b,k,x Sk(ky +bR∆ky,x) , (2.5)

where R represents the acceleration factor and Nb the predefined number of consecutive blocks to use

for reconstruction. The total number of coils is denoted by Nc, the fitting coefficients by w, and the

simultaneously measured signals by S. Usually, the filter mask “symmetrically” surrounds the omitted

element to recover. In other words, the choice of m ∈ N is restricted to

(
bNb

2
c−1

)
R︸ ︷︷ ︸

∆ACS

< m < bNb

2
cR .

Using more than one block for the reconstruction (Nb > 1) allows to incorporate more information

into each reconstructed line, which substantially improves the fitting. Theoretically, it is even possible

to make use of all acquired blocks, which would result in an exact, SENSE-like reconstruction. Prac-

tically, however, only a few blocks (usually four to eight) close to the corresponding missing lines are

used in order to reduce the computational effort but yet leading to reasonable results [77].

Besides the symmetric reconstruction scheme, it is possible to use a sliding block technique [22].

In this case, each missing k-space element is reconstructed based on several different configurations

of surrounding reference lines. Each configuration, thus, leads to a preliminary result. The weighted

combination of these estimations ultimately generates the final value of the omitted entry.

2.6.2 Autocalibration

The autocalibration stage uses a least-squares technique to calculate the fitting coefficients required

for the GRAPPA reconstruction. The center of k-space is sampled at Nyquist rate, whereas the sam-

pling rate at outer k-space is reduced by the acceleration factor R. The additionally acquired ACS lines

in the center region are used to estimate the coil weights containing the coil sensitivity information.

27

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Figure 2.15: GRAPPA Reconstruction Scheme
for S2(ky + 4∆ky) (highlighted omitted element in Coil2) with Nc = 3, R = 3, and Nb = 4. Neighbor-
ing reference lines are weighted with proper coefficients (w(4)

2,b,k) and finally added up according to
Equation 2.5.

The estimation of the reconstruction coefficients follows the same scheme that is used for GRAPPA

reconstruction according to Equation 2.5. The only difference is that there are no omitted ACS entries

but the weights w are unknown:

SACS
j (ky +m∆ky,x) =

Nc

∑
k=1

Nb−1

∑
b=0

w(m)
j,b,k,x SACS

k (ky +bR∆ky,x) . (2.6)

The autocalibration algorithm slides the filter mask shown in Figure 2.15 over all ACS lines along

PE-direction. Given the overall number NACS
r of acquired reference lines, there are

NACS
b = NACS

r − (Nb−1)R

28

2.6. THE GRAPPA ALGORITHM IN DETAIL

different filter mask positions within the ACS data. The fitting process described in Equation 2.6 is

repeated for every coil and for all NACS
b filter masks to incorporate as much information as possible

into the computation of the reconstruction weights.

Furthermore, it is possible to partition the k-space along the RO-direction into several segments

of length ∆s. As the sensitivities of each coil are assumed to be approximately constant within each

segment, the fitting coefficients have to be computed only once per segment (see Section 4.1).

All in all, this results in a large (over-determined) system of linear equations for each segment of the

following form:

[
B(ky0+i∆ky)

]
0≤ i<NACS

b︸ ︷︷ ︸
B

= W ·
[
A(ky0+i∆ky)

]
0≤ i<NACS

b︸ ︷︷ ︸
A

, (2.7)

where ky0 is the position of the first ACS block,

Aky :=

[
S1(ky +bR∆ky)

]
0≤b<Nb

...[
SNc(ky +bR∆ky)

]
0≤b<Nb

 ∈ C[Nb·Nc]×1 ,

Bky :=

[
S1(ky +(∆ACS + i)∆ky)

]
1≤ i<R

...[
SNc(ky +(∆ACS + i)∆ky)

]
1≤ i<R

 ∈ C[(R−1)Nc]×1 ,

W :=

[
w(m)

1,b,1

]0≤b<Nb

1≤m<R
· · ·

[
w(m)

1,b,Nc

]0≤b<Nb

1≤m<R
... · · ·

...[
w(m)

Nc,b,1

]0≤b<Nb

1≤m<R
· · ·

[
w(m)

Nc,b,Nc

]0≤b<Nb

1≤m<R

 ∈ C[(R−1)Nc]×[Nb·Nc] ,

[
w(m)

j,b,k

]0≤b<Nb

1≤m<R
:=

w(1)

j,0,k · · · w(1)
j,(Nb−1),k

... · · ·
...

w(R−1)
j,0,k · · · w(R−1)

j,(Nb−1),k

 .

The step size in RO-direction is denoted by ∆ky.

29

CHAPTER 2. MAGNETIC RESONANCE IMAGING

The system can be solved for W by applying the Moore-Penrose-Inverse also known as pseudo-

inverse of A denoted by A+ [17]:

A+ := lim
λ→0

(
AH(AAH −λE)−1) (2.8)

W ∼= BA+ ∼=
(
BAH)(AAH −λE

)−1
,

where E denotes the identity matrix. Please note that λ is a constant in the practical application and

has to be chosen very carefully to obtain reasonable results.

Needless to say, ACS lines that have been used for the autocalibration stage can directly be incor-

porated into the reconstructed k-space image to further improve image quality.

After the reconstruction of all missing k-space lines for each coil, the inverse Fourier Transform gen-

erates an uncombined image for each coil. There are different possibilities how to eventually join the

full set of uncombined images to the final slice image such as a standard sum of squares approach.

2.6.3 Further Development

The GRAPPA algorithm is all-important in practice and has been refined again and again. We give a

short overview of recent enhancements.

Huo and Wilson for instance came up with Robust GRAPPA in 2006 [35]. They adjusted the calcu-

lation of the reconstruction coefficients by reducing the influence of outliers within the calibration

region. In this way, the fitting accuracy and the overall quality of reconstructed images are improved

at the expense of doubled computational effort compared to conventional GRAPPA.

A further GRAPPA-based approach was proposed by Blaimer in order to accelerate 3D pMRI [4]. His

2D-GRAPPA Operator reduces the number of necessary phase-encoding steps in two spatial dimen-

sions requiring two separate reconstruction passes, one for each dimension.

Another field of research is the combination of different reconstruction techniques to improve im-

age quality. Hoge and Brooks developed a hybrid technique that leverages the advantages of both

GRAPPA and SENSE [31]: GRAPPA performs better in estimating low-frequency components of k-

space, whereas SENSE is better suited for high-frequency components.

30

2.7. IMAGING HARDWARE

Blaimer et al., finally, combined the 2D-GRAPPA operator with SENSE for accelerated volumetric

MRI [5].

A great deal of research has also been done in dynamic pMRI. Several image frames are gener-

ated by a combination of GRAPPA and a time-interleaved acquisition scheme. This process is called

Temporal GRAPPA (TGRAPPA) [10]. For coil calibration, directly adjacent time-frames are merged

to generate a set of completely encoded full-resolution reference data. The need for acquiring addi-

tional reference data is thus eliminated. Moreover, they showed that coil coefficients and sensitivity

estimates can be updated dynamically frame-by-frame, which allows for tracking changes during the

acquisition process.

Huang et al. subsequently introduced a technique similar in design: k-t-GRAPPA [34]. As the name

suggests, the main idea of GRAPPA is applied in both k-space and t-space.

2.7 Imaging Hardware

An MR system consists of several parts:

The magnet is the part and parcel of an MR system. It produces a static, homogeneous, and very

strong magnetic field of 0.5− 3.0T for clinical applications and up to 8T respectively for re-

search purposes. A high quality grade and a high field strength significantly improve the image

quality of the resulting MR images by a better SNR [46,29]. This is the reason why costly man-

ufactured magnets are used in modern MR systems to make the grade. For high-field systems

(B > 0.5T), superconducting magnets are commonly used. Superconductivity persists only at

very low temperatures close to absolute zero (0K =−273 ◦C). Therefore, the magnet is cooled

with a cryogenic cooling fluid, usually liquid helium. Once, the super-conducting magnet is en-

ergized to the desired field strength, it persists without any further current supply as long as the

cooling system works properly.

Besides superconducting magnets, it is also possible to use other types of magnets, e.g. per-

manent magnets and resistive electromagnets. Magnets of this kind are usually only capable of

lower magnetic field intensities (B < 1.0T) compared to superconducting magnets.

31

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Moreover, it is possible to distinguish between open and closed bore magnets. The former gen-

erates a vertically directed main magnetic field, the latter a horizontally directed one.

Patients equipped with ferromagnetic implants such as pacemakers have to be excluded from

MR examinations as the strong magnetic field would cause serious injury.

Radiofrequency coils

Transmitter coils generate the sequence of RF pulses to stimulate the nuclear spins of the body

tissue (see Chapter 2.2.3). They surround the whole, or a part of the patient’s body.

The resulting MR signal, which provides the diagnostic information, is detected by receiver

coils. As the signal is very weak and sensitive to electrical interference, special shielding (Fara-

day Cage) is required for the room in which the MR scanner is installed. Furthermore, there are

special receiver coils of different size and shape determined by its respective area of application,

e.g. coils for head, spine, breast, etc.

Gradient coils are required for slice selection as well as frequency and phase encoding (see Chap-

ter 2.3). There are three sets of gradient coils to achieve arbitrary gradients in 3D, one set for

each direction. Usually, they are installed in the magnet’s bore. These coils generate a contin-

ual, rapidly hammering noise during a scan. The loudness of this sound may even exceed safety

guidelines and thus requires ear protection.

Computer Systems

The operator prescribes the desired pulse sequence with its corresponding parameters for an

examination on a host computer. These parameters are then passed to multiple subsystems with

their own microprocessors that are responsible for proper device control. Another computer

system, then, processes the acquired data and generates a set of reconstructed MR images that

can finally be archived, printed, or simply visualized on the host computer.

Some more technical details of MR hardware are given in [46] and [49].

32

Chapter 3

General-Purpose Computing on GPUs

3.1 Introduction

Recent desktop PCs are all equipped with more and more powerful Graphics Processing Units (GPUs)

originally designed for compute-intensive and highly parallel computations primarily in the range of

computer graphics. Over the past years, the ever-growing distribution of GPUs has created a new area

of research trying to use computer graphics hardware for non-graphics applications. Meanwhile, there

has even emerged a whole community around General-Purpose Computing on GPUs (GPGPU) [24].

3.1.1 Why GPUs for General-Purpose Computing?

GPUs are suitable for a general-purpose use for various reasons:

First and foremost, GPUs provide a highly specialized compelling platform for computationally

intensive tasks. In recent years, there has been a substantial increase in performance owing to - among

other factors - the game industry. The growth rate of GPU peak performance significantly outpaces

the well-known Moore’s law for CPUs as visualized in Diagram 3.1.

The reason for this new Moore’s law is the specialized design of GPUs. They are optimized for high

throughput and arithmetic intensity using a tremendous number of floating-point units, whereas CPUs

are optimized for low latency. Therefore, additional transistors on GPUs can be devoted to computa-

tion and data processing rather than data caching and sophisticated flow control, which results, by the

way, even in a better energy efficiency. In other words, the computational power of GPUs dwarfs that

33

CHAPTER 3. GENERAL-PURPOSE COMPUTING ON GPUS

Figure 3.1: Trend of Peak Performance Since 2003

GPU (NVIDIA) CPU

GeForce 8800 GTX Tesla C870
Intel Core2 Duo Quad-Core Intel Xeon

E6700 X5482

Computing 16 multiprocessors 2 cores 4 coresElements (8 ALUs each at 1.35 GHz)
Core Clock 575 MHz 2.66 GHz 2.88 GHz
Theoretical Total 345 GFLOP/s 43 GFLOP/s 92 GFLOP/sPeak Performance

Dedicated Memory 768 MB (GDDR3) 1.5 GB (GDDR3)
depending on additional hardware

Bandwidth 86.4 GB/s 76.8 GB/s

Price $ 500 ∼ $ 1000 $ 250a $ 800a

awithout memory

Table 3.1: Comparison of Recent GPUs and CPUs

of powerful recent Central Processing Units (CPUs) of high-end server CPUs as shown in Table 3.1.

Another advantage is the cost-effectiveness since GPUs feature a much better cost-performance ratio

compared to CPUs. Ever since the programmability of this affordable and high-performance hardware

is provided1, the deployment of GPUs for general-purpose suggests itself, of course.

1The programmability of GPUs has been improved over and over again with respect to a more and more user-friendly design
especially in recent years (see Chapter 3.2 and 3.3).

34

3.2. PROGRAMMABILITY OF GPUS

3.1.2 Limitations and Requirements

GPGPU is in no way a panacea, though. Due to the massively parallel and specialized architecture,

not all problems are well suited for GPUs such as those that are inherently sequential or cause un-

predictable memory access as scatter memory operations2 are rather slow especially for uncoalesced

access patterns [67]. GPU-based algorithms have to use inherent pipelining, parallelism, and Single

Instruction, Multiple Data (SIMD) capabilities, along with the provided vector-processing function-

alities [45] to run efficiently on a GPU and harness its computational power. Moreover, we have to

be aware of (slightly) limited memory resources on a GPU as well as the low bandwidth between

host (CPU) and device (GPU). Applications with high arithmetic intensity3 streaming through large

quantities of data are ideal as memory access is relatively slow compared to arithmetic operations.

As GPUs are only capable of 32-bit single-precision arithmetic at present, they are not applicable to

very large-scale computational problems [67]. However, the leading manufacturers AMD and NVIDIA

announced the release of GPUs supporting double-precision (64-bit) Floating-Point (FP) numbers for

2008.

3.2 Programmability of GPUs

As already mentioned, graphics cards have originally been designed for (interactive) computer graph-

ics. The rapid rasterization of geometric primitives up to 60 times per second for real-time graphics

such as videogames was and still is the main task which is put into practice by pipelining.

3.2.1 Graphics Pipeline

First of all, each scene to be rendered has to be described by geometric primitives possibly along with

additional information concerning light sources, material characteristics and the viewer’s position. The

decomposition results in a stream of primitive vertices and fragments that are processed by the Graph-

ics Pipeline that is sketched in Figure 3.2. This pipeline consists of different stages that are mostly

implemented in hardware to reach maximum throughput. In the very beginning, the functionality of

the graphics pipeline was fixed and no programmability was exposed to programmers. Nevertheless,
2Write access to arbitrary memory location i: out[i] = value
3number of arithmetic operations per data word

35

CHAPTER 3. GENERAL-PURPOSE COMPUTING ON GPUS

this feature came along over the years and provided an improved flexibility of the pipeline due to pro-

grammable vertex, geometry, and fragment shaders. Since then it has been possible to use GPUs not

only for image-synthesis, but to consider them as computational coprocessors. This was the beginning

of the GPGPU era.

Figure 3.2: Graphics Pipeline
The pipeline processes a stream of geometric primitives in different stages. Geometry shaders have
been introduced in DirectX 10 as an additional stage that allows to generate new geometric primitives
such as points, lines, and triangles without CPU intervention.

3.2.2 High-Level Languages

Meanwhile, various different Application Programming Interfaces (APIs) and corresponding shading

languages have been invented by different industry foundations and the manufacturers itself in order to

facilitate and standardize the programming of graphics hardware. There are essentially three shading

languages that have become widely accepted in the beginning as listed in Table 3.2. These languages

Language Used Standard Inventor

GLSL OpenGL Shading Language OpenGL ARBa [65]

HLSL High Level Shading Language DirectX Microsoft Corp. [47]

Cg C for graphics OpenGL/DirectX NVIDIA Corp. [54]

aOpenGL Architecture Review Board

Table 3.2: GPU Shading Language Overview

36

3.3. COMPUTE UNIFIED DEVICE ARCHITECTURE

all provide almost the same functionality that can be used for GPGPU. There is a recommendable

“Basic Math Tutorial” by Dominik Göddeke [16] explaining how to use the special features and the

unusual programming model of graphics cards for a simple linear algebra operator. Computing on

graphics hardware is like drawing. Therefore an algorithm initially has to be transformed in terms

of graphics. From a programmer’s point of view, GPGPU is not only a matter of simply learning a

new programming language but understanding a completely different concept of programming. The

strength of these shading languages lies definitely in real-time graphics but other tasks are rather

cumbersome. The reasons therefore are limited shader capabilities:

• restricted addressing modes (lack of scatter operations)

• limited instruction set (integer and bit operations not supported until recently)

• limited communication and information exchange between pixels

In recent years, though, new graphics hardware and many high-level and meta-programming

frameworks have been developed providing more flexibility and an even higher level of abstraction,

which allows to rather focus on the algorithm than on implementation tasks. Houston overviewed

“High Level Languages for GPUs” [33] which are partly shown in Table 3.3.

Language Inventor

Accelerator Microsoft Research [48]

Brook Stanford University [11]

CTMa Advanced Micro Devices, Inc. [1]

CUDAb NVIDIA Corp. [63]

RapidMind RapidMind, Inc. [73]

aClose To The Metal

bCompute Unified Device Architecture

Table 3.3: Overview of GPGPU High-Level Languages

3.3 Compute Unified Device Architecture

As this thesis focuses on NVIDIA’s Compute Unified Device Architecture (CUDA), the main aspects

of this recent software environment are explained in this section. Further particulars can be found in

the CUDA Programming Guide [61] and in the CudaZone [63].

37

CHAPTER 3. GENERAL-PURPOSE COMPUTING ON GPUS

3.3.1 Overview

With their latest G80 series chips launched in November 2006, NVIDA embarked on a new strat-

egy. They moved away from the long-established graphics pipeline to a more flexible general-purpose

computational engine with Unified Shaders. On previous graphics hardware, there are separate cus-

tom processing units for vertex and fragment shaders. The unified shader architecture, however, uses

several data-parallel FP processors that can run each of the shaders. As opposed to the usual ver-

tex/fragment processor architecture, it prevents from imbalanced workload and therefore results in

an improved overall utilization. This imbalance may be caused for instance by unfavorable scenes.

Simply lighted scenes with complex geometry lead to vertex processors used to full capacity but

under-worked fragment processors. Correspondingly, we get the contrary result for scenes with rather

simple geometry but complex illumination.

CUDA provides a completely new environment and programming model for GPGPU and goes

without conventional graphics APIs such as OpenGL or DirectX. Instead, the programmer has the

possibility to use either the CUDA Driver API or the CUDA Runtime API. The former offers more

flexibility, whereas the latter makes life a lot easier without loss of efficiency for the most part. There

is even a third API layer at the programmer’s command comprising two self-contained higher-level

libraries CUBLAS [56] and CUFFT [57] implementing a subset of core Basic Linear Algebra Subpro-

grams (BLAS) and the Fast Fourier Transform (FFT).

3.3.2 Programming Model

The applications themselves are implemented using a programming language that is defined by the

CUDA API. As it is based on ANSI C, with only minimal extensions for concurrency where necessary,

it is very easy to learn from a programmer’s point of view. Basically, there are two different types

of source code within a program. Some parts are executed on the host, others are simultaneously

carried out on the device. The source code includes both host side code and function calls of special

CUDA API routines as well as potential user-defined CUDA device functions also referred to as kernel

(program). The NVIDIA C compiler (nvcc) [55] available in the CUDA Toolkit [63] preprocesses and

separates the hybrid code into CPU code and intermediate NVIDIA Assembly, also known as Parallel

Thread Execution Code (PTX) [60]. The host side code is then compiled by a standard C compiler

38

3.3. COMPUTE UNIFIED DEVICE ARCHITECTURE

whereas the PTX code is translated to target code with respect to the underlying hardware and target

specific optimizations.

It is the host program’s task to initiate and coordinate the function calls to the device. The general

course of action is as follows:

1. Prepare and initialize input data

2. Upload input data (and instructions4) from host to device

3. Perform calculations on device by executing kernel programs

4. Download results from device to host.

In contrast to former approaches, CUDA and the underlying hardware now also support full integer

and bitwise instructions, unlimited branching and looping, as well as arbitrary scatter and gather oper-

ations. In terms of efficiency and performance, however, we should handle these tools for flow control

and memory access with care and take into account some basic rules listed in Section 3.3.7.

3.3.3 Execution Model

GPUs are equipped with a large number of computational units (see Chapter 3.3.5). Each kernel is

executed concurrently by thousands of light-weight threads on different data. Threads are grouped

into thread blocks of the same size per kernel (up to 512). Each block is processed by a single G80

Multiprocessor (MP) that is capable of simultaneously processing a maximum number of 8 blocks.

The smallest subgroup of threads within a block that is executed physically in parallel in a SIMD

fashion is denoted as warp. The warp size, i.e. the number of threads in a warp, is 32 on G80 at

present. As the warps of a block are themselves executed logically parallel in an undefined execution

order (time-sliced scheduling), CUDA provides special routines to synchronize thread execution per

block. Threads of one block share their data through fast shared memory, which allows for cooperation

and inter-communication within a whole block (see also Chapter 3.3.4).

Blocks of similar type, i.e. of the same size and executing the same kernel, are aligned in a one or two

dimensional grid. During execution, each thread has access to the corresponding thread index within

the according block and its block index within the grid as described in Appendix A.4. It is particularly

4This is done automatically.

39

CHAPTER 3. GENERAL-PURPOSE COMPUTING ON GPUS

important to note that information exchange between threads is limited as reliable communication and

synchronization between different blocks within a grid is not supported in CUDA.

All in all, this is a Single Program, Multiple Data (SPMD) execution model as each block in the

grid executes the same kernel. Grid and block dimensions have to be specified for each kernel call as

shown in Listing 3.1.

Listing 3.1: Launching a CUDA Kernel
dim3 block(<BLOCK_SIZE_X >, <BLOCK_SIZE_Y >, <BLOCK_SIZE_Z >);

dim3 grid(<GRID_SIZE_X >, <GRID_SIZE_Y >)

myKernel <<<grid , block >>>(<parameter1 >, <parameter2 >, ...);

3.3.4 Memory Model

The CUDA memory model is illustrated in figure 3.3. Basically, there are four different types of

memory adapted for different purposes [61]:

1. Global Memory

Main device memory of large capacity (up to 1.5 GB) that is accessible from all threads. As

there is no implicit caching, access is very slow (between 400 and 600 clock cycles).

2. Shared Memory

Dedicated data cache limited to 16 kB per MP (organized into 16 banks5). Access is as fast

as registers with low latency. Explicitly managed by the programmer and shared between all

threads within a block for inter-thread communication.

3. Constant Memory

Read-only memory accessible from all threads but limited to 64 kB with a cache working set of

8 kB per MP.

4. Texture Memory

Read-only region of device-memory with a cache working set of 8 kB per MP. The texture cache

is optimized for 2D spatial locality and designed for streaming fetches with a constant latency.

Texture memory is readable for all threads.
5Memory modules of 32 bit bandwidth that can be accessed simultaneously [61].

40

3.3. COMPUTE UNIFIED DEVICE ARCHITECTURE

Additionally, each MP is equipped with Nmp
r = 8,192 registers that are uniformly distributed among

all threads of Nmp
b concurrently processed blocks per MP. The number N t

r of registers available per

thread is limited to [61]:

N t
r =

Nmp
r

Nmp
b · ceil(Nb

t ,32)
, (3.1)

where Nb
t is the number of threads per block and ceil(•,k) = k · d•/ke .

Figure 3.3: CUDA Memory Model

41

CHAPTER 3. GENERAL-PURPOSE COMPUTING ON GPUS

3.3.5 Hardware

There are several CUDA-enabled NVIDIA GPUs with different performance. The GeForce 8800 GTX

is equipped with 16 MPs consisting of two Special Function Units (SFUs), eight Arithmetic Logic

Units (ALUs) clocked at 1.35 GHz, and 16 kB cache per cluster and 768 MB of device memory (see

Table 3.1 on page 34).

The computation units support a full featured instruction and IEEE 754 single-precision (32-bit) FP

numbers. For the sake of completeness, we should mention that arithmetic FP operations are not yet

perfectly IEEE-compliant. Plans of support for double-precision (64-bit) are announced in upcoming

chip sets also by AMD for 2008.

Moreover, NVIDIA offers the High-Performance Computing (HPC) oriented Tesla product line pri-

marily used for scientific applications. These devices use up to four high-end G80 GPUs with a total

of 6 GB device memory (1.5 GB each).

3.3.6 Designing Parallel Algorithms

A general “Introduction to Parallel Computing” is given by Grama [19]. The design of parallel algo-

rithms (for any multiprocessor architecture) usually proceeds in the following steps:

1. Computations are decomposed into different tasks that can be executed simultaneously

2. Tasks are mapped onto processes6

There are different techniques for both steps depending on the particular problem. Moreover, the

circumstances of the underlying target programming platform necessarily have to be taken into con-

sideration.

Now, we have to translate this general scheme into the terminology of CUDA. According to Sec-

tion 3.3.2, there is a static mapping of tasks onto processes, even if there is no exact equivalent to

this term. Depending on the decomposition and the granularity, it may make sense to map tasks onto

single threads or even onto thread blocks. As a reminder, the hierarchy of grids, blocks, warps, and

threads includes different restrictions regarding resource utilization and inter-thread communication,

6The term “process” is used in broader sense in this case and there is no, or at least not necessarily a relation to the definition
of a process in an operating system.

42

3.3. COMPUTE UNIFIED DEVICE ARCHITECTURE

i.e. synchronization and shared memory access space. This has to be taken into consideration espe-

cially for the first step. Further details of the underlying GPU platform, that we have to account for,

are described in the next section.

3.3.7 Performance Aspects

In order to efficiently use the massively parallel performance potential of GPUs it is of particular im-

portance to follow some basic rules. A couple of recommendable tutorials concerning optimal CUDA

performance can be found at www.gpgpu.org [24, 25, 82]. Very high speedups can be achieved only

by understanding the GPU and CUDA architecture [61].

Basically, there are three different fields of optimization dealing with

1. data transfer between host and device

2. memory usage and access

3. utilization of parallelism

In the following, we highlight the most important aspects of these categories that can help to avoid

common pitfalls.

Data Transfer The CUDA supporting device is connected to the host via 64-bit PCI Express x16

Graphics Interface with a peak bandwidth of 4 GB/s per direction [38]. As the bus bandwidth is

the bottleneck, it is advisable to reduce data transfers between host and device to a bare minimum7.

Grouping all transfer tasks to a single large data transfer minimizes the transmission time. Moreover,

CUDA offers intrinsic routines to allocate page-locked (host) memory that remains unaffected by

memory swap operations. On the one hand, pinned memory speeds up transfers, on the other hand it

is yet a limited resource and has to be allocated well-considered too much of it may harm the overall

system performance.

Memory Usage Particularly, the optimization of memory usage and access patterns yield highest

time savings in the majority of cases.

Read and write instructions on the global memory are likely to be a performance bottleneck as a single

7see also general program layout in Section 3.3.2

43

www.gpgpu.org

CHAPTER 3. GENERAL-PURPOSE COMPUTING ON GPUS

access operation takes 400 up to 600 clock cycles. For this reason, it is recommendable to leverage

shared memory with low latency and high bandwidth. A kernel usually follows the steps described

below:

1. load data from global memory to shared memory

2. synchronize threads (within block)

3. process data in shared memory

4. synchronize threads (if necessary)

5. copy result(s) from shared memory to global memory

Accessing global device memory, coalesced memory access is crucial to maximize bandwidth. Op-

timized memory access patterns may result in a speedup of ten compared to non-coalesced read and

write operations. In the same way, we should take care of spatial locality accessing cached texture

memory.

As shared memory is organized in banks (see Section 3.3.4) it is again the programmer’s task to

avoid high-degree bank conflicts. Time savings due to bank conflict avoidance are usually rather low,

though. Finally, memory latency can be hidden by scheduling different warps during memory access

whenever possible.

Utilization of parallelism The massively parallel computational power of graphics hardware can

only be used efficiently as long as there are enough thread blocks to keep the multiprocessors busy. To

achieve this goal, the structure of the according algorithm has to be adjusted for maximized indepen-

dent parallelism. Moreover, we have to partition the corresponding computations at a proper level of

granularity and select “suitable” kernel execution parameters, e.g. grid and block layout. As a matter

of principle, the number of blocks needed for the execution of a single kernel should be (consider-

ably) larger than the number of available multiprocessors. For efficient latency hiding, it is worthwile

to maximize arithmetic intensity but to keep resource usage (registers, shared memory) low enough to

allow for several active blocks per MP (see Equation 3.1). In other words, we have to strive for high

multiprocessor occupancy:

Occupancy =
number of warps running concurrently on an MP
maximum number of concurrent warps on an MP

.

44

3.3. COMPUTE UNIFIED DEVICE ARCHITECTURE

The overall performance is, however, not necessarily augmented by increased occupancy. Neverthe-

less, multiprocessors with low occupancy cannot adequately hide latency for memory-bound kernels.

NVIDIA provides a useful developer tool, the NVIDIA Occupancy Calculator [58], that supports in

optimizing kernel execution configurations and occupancy. Just recently, the NVIDIA Visual Profiler

has been released providing detailed and very helpful information about kernel behavior during exe-

cution such as execution time, degree of branching, and basic memory access pattern analyzes among

many others [64].

Utilization of control flow instructions is yet another aspect of optimizing for parallelism. As already

mentioned, the GPU multiprocessors execute warps based on the SIMD paradigm. Instructions of

different traversed branches have to be serialized, which results in SIMD divergence. During the ex-

ecution of instructions belonging to a specific branch, only threads fullfilling the appropriate branch

condition can be executed, all other threads within a warp are idle. Consequently, branching instruc-

tions have to be used well-considered to minimize divergent warps.

Other possibilities There is a multitude of other techniques for performance optimization in CUDA.

Even if arithmetic operations are much faster compared to memory access, they are not for free by no

means. Especially, more complex operations on FP numbers such as division, square root, logarithm,

exponential function, sine, and cosine take several clock cycles. This may be a potential bottleneck

for computationally limited kernels. The CUDA Runtine Math Library, though, provides functions

performing much faster but with reduced 24-bit accuracy which is still sufficient in certain cases [61].

Finally, there are many elaborate techniques which may result in tremendous speedups such as loop

unrolling, template programming, or optimization of PTX code.

45

CHAPTER 3. GENERAL-PURPOSE COMPUTING ON GPUS

3.4 GPGPU in Practice

Besides medical imaging, there are various GPGPU applications in different fields of research har-

nessing the computational power of graphics hardware, particularly for parallel data processing and

compute-intensive tasks:

• cryptography

• linear algebra

• computational geometry

• motion planning and navigation

• global illumination

• sorting

• database management and data mining

• signal processing

• physical based simulations (fluid dynamics)

• computational finance

• computational biology and bioinformatics

In many cases, GPU-based algorithms outperform CPU-based approaches by an order of magnitude.

A showcase and success story for instance is the current project Folding@Home at the Stanford Uni-

versity [68]. Their goal is to study the complex process of protein folding and related diseases using

distributed clients all over the world. In October 2006, an ATI-GPU accelerated client contributed

28,000 GFlops in one month, which is more than 18% of the total amount contributed by CPU clients

since October 2000.

For further information about GPGPU applications and techniques we recommend [59, 24].

46

Chapter 4

GPGPU for GRAPPA Autocalibration

We have already presented theoretical details of the GRAPPA algorithm in Section 2.6. This chapter

focuses on the GRAPPA autocalibration stage and presents a GPU-based approach. The initial point

is the C++ GRAPPA implementation courtesy of Siemens Medical Solutions, Erlangen that is applied

for image reconstruction in current Siemens MR systems.

We present the design and progression of our approaches step-by-step based on pseudo code snippets.

Please note Section A.3 and A.4, particularly for semantical details.

4.1 Autocalibration Algorithm in Practice

There are two different versions for the autocalibration stage. Basically, they both follow the same

pattern of Listing 4.1 to compute the coefficient matrix W according to Equation 2.7.

Listing 4.1: Steps of GRAPPA Autocalibration Stage

1. set up matrices A and B using ACS lines

2. normalize A and B

3. U = B AH

4. V = (A AH - λ E)-1

5. W = U · V

In the following we refer to these basic steps.

47

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

4.1.1 Basic Approach

The acquired k-space of each coil can be partitioned along RO-direction into several segments of

length ∆s (see Section 2.6.2). For each of these ∆s columns within a segment, we get a system of

linear equations according to Equation 2.7. Assuming approximately constant coil sensitivity within

each segment, however, we can combine the ∆s equation systems with equal W by merging the corre-

sponding matrices Aky and Bky :

Âky :=

[
S1
(
ky +bR∆ky, kx0 + s∆kx

)]0≤b<Nb

0≤s<∆s
...

...
...[

SNc

(
ky +bR∆ky, kx0 + s∆kx

)]0≤b<Nb

0≤s<∆s

 ∈ C[Nb·Nc]×∆s , (4.1)

B̂ky :=

[
S1
(
ky +(∆ACS + i)∆ky, kx0 + s∆kx

)]1≤ i<R

0≤s<∆s
...

...
...[

SNc

(
ky +(∆ACS + i)∆ky, kx0 + s∆kx

)]1≤ i<R

0≤s<∆s

 ∈ C[(R−1)Nc]×∆s ,

and finally solve the extended system for W :

[
B̂(ky0+i∆ky)

]
0≤ i<NACS

b︸ ︷︷ ︸
B

= W ·
[
Â(ky0+i∆ky)

]
0≤ i<NACS

b︸ ︷︷ ︸
A

. (4.2)

The first column of the considered segment is denoted by kx0 and the step size in PE-direction by ∆kx.

To point out the configuration of A and B, it is once again visualized in Figure 4.1.

The same matrix pattern is of course also used for the reconstruction of the skipped lines, once the

coefficients are computed. Obviously, Nb neighboring reference points within each channel contribute

to the reconstruction of a single missing element.

The normalization of the matrices A and B in Step 2 results in better numerical stability. The corre-

sponding normalization parameter η as well as the regularization parameter χ involved in the compu-

tation of λ in Step 4 are user defined and have to be chosen very carefully.

The computation of the unknown fitting coefficients W of each segment is outlined in Algorithm 4.2

(findWs).

48

4.1. AUTOCALIBRATION ALGORITHM IN PRACTICE

Figure 4.1: Matrix Structure in Basic GRAPPA Autocalibration
for Nc = 2, R = 3, and Nb = 4. The green fitting mask is slided along PE-direction over all ACS lines.
Each mask shift generates another part of the final matrices A and B.

49

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

Algorithm 4.2: GRAPPA Autocalibration (findWs)
Input:

S: ACS data

η: parameter for normalization

χ: parameter for regularization

hA: height of A (#rows)

1 // initialization

A = []; B = []

3

for each segment do

5 // Steps 1 + 2

for each ACS block i do

7 A seg = Âky0+i∆ky // using S

B seg = B̂ky0+i∆ky // using S

9

p = 0

11 for each element e in B seg do

p += ‖e‖2
2

13 end

ψ = p−η/2

15

A seg = A seg .* ψ

17 B seg = B seg .* ψ

19 A{0,i} ∆s = A seg // append Aseg to A

B{0,i} ∆s = B seg // append Bseg to B

21 end

23 // Step 3

U = B * AH

25

// Step 4

27 V̂ = A * AH

t = Trace(V̂)

29 λ = χ * t / hA
V̂ += λ * E

31 V = V̂−1

33 // Step 5

Wseg = U * V

35 W{0,i}hA = W seg // append Wseg to W

end

Output:

W: fitting coefficients for all segments

4.1.2 Improved Approach

The improved version for the GRAPPA autocalibration does not only use several (KPE) reference

points in PE-direction but also a certain number (KRO) of reference points in RO-direction. In other

50

4.1. AUTOCALIBRATION ALGORITHM IN PRACTICE

words, a two-dimensional filter kernel of size KPE×KRO is applied to the input data. This leads to a

slightly different matrix configuration for A and B illustrated in Figure 4.2. The filter is initially placed

in the “top-left” corner of the ACS data and is then shifted Nsh times: NRO
sh times in RO-direction and

NPE
sh times in PE-direction1:

Nsh = NRO
sh NPE

sh

NRO
sh = Ncol−KRO +1

NPE
sh = NACS

r −KPE +1 ,

where Ncol denotes the overall number of k-space columns of each coil and NACS
r still the number of

ACS rows. The formal description of the matrix layout is then given by:

Ãky :=
[
Ãc

ky

]
0≤c<NRO

sh

∈ C[KPE·Nc·KRO]×NRO
sh , (4.3)

B̃ky :=
[
B̃c

ky

]
0≤c<NRO

sh

∈ C[(R−1)Nc]×NRO
sh ,

Ãc
ky

:=

[
S1
(
ky + iR∆ky, kx0 + s∆kx

)]0≤ j<KRO

...
...

...[
SNc

(
ky + iR∆ky, (c+ j) ∆kx

)]0≤ j<KRO

0≤ i<KPE

∈ C[KPE·Nc·KRO]×1 ,

B̃c
ky

:=

[
S1
(
ky +(∆PE + i)∆ky, (c+∆RO)∆kx

)]1≤ i<R

...
...

...[
SNc

(
ky +(∆PE + i)∆ky, (c+∆RO)∆kx

)]1≤ i<R

 ∈ C[(R−1)Nc]×1 ,

∆RO =
⌊

KRO−1
2

⌋
, ∆PE = R ·

(⌊
KPE

2

⌋
−1
)

.

The resulting overdetermined linear equation system

[
B̃ky0+i∆ky

]
0≤ i<NPE

sh︸ ︷︷ ︸
B

= W ·
[
Ãky0+i∆ky

]
0≤ i<NPE

sh︸ ︷︷ ︸
A

(4.4)

is finally solved for W .

1initial position of the filter kernel included in each case

51

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

Figure 4.2: Matrix Structure in Improved GRAPPA Autocalibration
for Nc = 2, KRO = 5, and KPE = 4. The green KPE×KRO filter kernel is shifted along RO - and PE -
direction. Each mask position generates another column vector for the matrices A and B.

52

4.1. AUTOCALIBRATION ALGORITHM IN PRACTICE

Besides the different matrix layout, there is an additional power clipping step in the improved

algorithm before the slightly adjusted normalization in Step 2. The other steps of the improved ap-

proach remain the same. The keynote of the clipping step is to exclude a certain amount κ of “inter-

fering” equations from the center of k-space to improve numerical stability. The selection is based on

the corresponding “coefficient power”. Further details are given in the comprehensive description of

findWsImproved in Algorithm 4.3:

Algorithm 4.3: Improved GRAPPA Autocalibration (findWsImproved)
Input:

S: ACS data

η: parameter for normalization

χ: parameter for regularization

κ: parameter for power clipping

1 // initialization

A = []; B = []

3

nD = κ * Nsh // number of equations to discard

5 list = SortedList(nD) // sorted list for nD (colIdx, pow) pairs

7 // Steps 1 + 2

for i = 0 to NPEsh-1 do

9 p = 0

ARO = []; BRO = []

11

for j = 0 to NROsh-1 do

13 acol = Ã
j
i; bcol = B̃

j
i

15 pA = ‖acol‖22; pB = ‖bcol‖22
pcol = pA * nRowB + pB * nRowA

17 p += pcol

19 colIdx = i * NROsh + j

list.insertSort((colIdx , pcol))

21

ARO[•,j] = acol
23 BRO[•,j] = bcol

end

25

ψ = p-η/2

27 ARO = ARO .* ψ

BRO = BRO .* ψ

29

A{0,i}NROsh
= ARO // append ARO to A

31 B{0,i}NROsh
= BRO // append BRO to B

end

33

53

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

// power clipping

35 for i = 0 to nD-1 do

idxdiscard = list[i].colIdx

37 A[•,idxdiscard] = 0; B[•,idxdiscard] = 0

end

39

// Step 3

41 U = B * AH

43 // Step 4

M = A * AH

45 t = Trace(M)

λ = χ * t / #aRow

47 M += λ * E

V = M -1

49

// Step 5

51 W = U * V

Output:

W: fitting coefficients

4.1.3 Computational Costs and Complexity

As we have seen, the two approaches only differ in the first steps. Once, the matrices A and B are filled

with accordingly normalized values and clipped, the remaining Steps 3 to 5 are the same. These final

steps include the computationally most intensive and hence most time-consuming operations of the

whole autocalibration algorithm, i.e. complex-valued matrix multiplication and matrix inversion. We

trace back the complex-valued operations to FP operations to get a reasonable estimation for the total

computational costs.

Complex numbers In the following, z1 and z2 are assumed to be complex numbers and a,b,c,d to

be FP numbers such that

z1 = a+bi ∈ C

z2 = c+d i ∈ C .

Complex addition The addition of z1 and z2 requires two FP additions according to

z = z1 + z2 = (a+ c)+(b+d) i .

54

4.1. AUTOCALIBRATION ALGORITHM IN PRACTICE

Complex multiplication The product z of z1 and z2 is

z = z1 · z2 = (ac−bd)+(ad +bc) i ,

and takes four FP multiplications and two FP additions2.

Matrix Multiplication The multiplication of two matrices X ∈ Cr×s and Y ∈ Cs×t is defined as

Z = X · Y

zi, j =
s

∑
k=0

xi,s · ys, j ,

where Z =
[
zi, j

]0≤i<r

0≤ j<t
∈ Cr×t , X =

[
xi, j

]0≤i<r

0≤ j<s
∈ Cr×s , Y =

[
yi, j

]0≤i<s

0≤ j<t
∈ Cs×t .

The computation of each element of Z hence requires s complex multiplications and s complex addi-

tions3. As matrix Z consists of r ·t elements, the overall computational effort adds up to r ·t ·s complex

multiplications and complex additions respectively.

If we neglect the difference between FP multiplication and FP addition and count basic FP operations

provided by a processor we end up with

Σ
mmul = ϑ · (r · s · t) , ϑ ∈ N (4.5)

FP operations for the multiplication of A and B. The constant ϑ depends on the supported instruction

set of the processing unit4. The simplest case is a one-to-one mapping, which results in ϑ = 2+(2+

4) = 8. If we assume the processor to feature sophisticated operations such as Multiply-Add (madd)

we can achieve ϑ = 5 or even ϑ = 4 depending on the handling of the subtraction within the complex

multiplication.

Now we get back to the actual problem and include these preliminary considerations concerning

complex-valued matrix multiplication. First of all, we have to look back on the occurring matrices and

2addition and subtraction are equated
3Strictly speaking, there are only s−1 additions as the first one is for free. This detail is neglected to keep things as simple
as possible.

4and the compiler’s smartness

55

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

findWs findWsImproved

rows # columns # rows # columns

A Nb ·Nc
∆s ·NACS

b

KPE ·Nc ·KRO
Nsh

B (R−1)Nc (R−1)Nc

Table 4.1: Matrix Dimensions in GRAPPA Autocalibration

step operation findWsa findWsImproved

3 U = B ·AH (R−1)Nb (Nc)
2 NACS

b Ncol (R−1)KPEKRO (Nc)
2 Nsh

4b V̂ = A ·AH (Nb)
2 (Nc)

2 NACS
b Ncol (KPE)2 (KRO)2 (Nc)

2 Nsh

5 W = U ·V (R−1)(Nb)
2 (Nc)

3 (R−1)(KPE)2 (KRO)2 (Nc)
3

aStep 3 and 4 are repeated for all Ncol/∆s segments

bregularization and inversion unconsidered

Table 4.2: Computational Complexity of GRAPPA Autocalibration
The table lists the total number of FP operations as multiple of ϑ for matrix multiplications in the
GRAPPA autocalibration.

their dimensions shown in Table 4.1 (see also Equations 4.2, 4.3, 4.4). Table 4.2 lists the computational

costs of Steps 3 to 5 according to Equation 4.5 and Table 4.1.

We want to point out that the number of channels Nc is crucial as it is involved cubically and hence a

key factor. Even though arrays of 64 and 128 coils are already available for exploratory MR systems,

their practical application has been all but possible up to now due to unacceptable reconstruction times.

Current MR systems usually work with up to 32 input channels. However, the whole set of coils is

solely involved in the autocalibration step, whereas the reconstruction stage only uses a fraction of

them as output channel. The channel reduction reduces the number of rows in B and speeds up the

whole image reconstruction as there are much fewer lines to reconstruct and to transform back into

image space.

56

4.2. MATRIX MULTIPLICATION

4.2 Matrix Multiplication

As the complex-valued matrix multiplication is the most time-consuming operation in the GRAPPA

autocalibration, this section addresses this problem and presents different GPU approaches.

We consider the multiplication of two complex-valued matrices

X ∈ Cr×s , Y ∈ Cs×t , where
r

∆bx
,

s
∆bk

,
t

∆by
∈ N (4.6)

Z = (X · Y) ∈ Cr×t
∆bx , ∆bk , ∆by ∈ N .

The additional demands on matrix dimensions do not profoundly restrict the general applicability

as each matrix can be extended with extra rows and columns filled with zeros (padding) to fulfill

the conditions. We assume both (padded) matrices X and Y to be initially stored in global memory.

Moreover, X , Y , and Z are considered as synonyms for the matrices itself on the one hand and the

corresponding locations in global memory on the other hand. At this point, we would like to draw

your attention to Section A.2 for further details on matrix storage and access.

4.2.1 Basic Approach

First of all, we explain a straightforward approach also described in the CUDA Programming Guide [61]

and implemented as a showcase in the CUDA 1.1 Software Development Kit (SDK) [63].

The “blocked” execution model of CUDA suggests to partition output data (matrix Z) into tiles of

size ∆bx×∆by that are mapped to thread blocks. Each thread computes a single tile entry as the inner

product of a single row of X and a single column of Y . In doing so, threads in the same row of a block

may share their X-row, threads in the same block-column their Y -column, respectively. We combine

row- and column-sharing to avoid multiple redundant accesses to global memory by initially loading

parts of the required data into shared memory (see also Section 3.3.7). In general it is impossible to

load all ∆bx X-rows and ∆by Y -columns at once as shared memory is a quite limited resource. The

computation of the inner product is hence split up into consecutively processed segments of size ∆bk

as shown in Figure 4.3. This segmentation results in a reduced and particularly feasible amount of

shared memory required all at once, i.e. ∆bk (∆bx +∆by) elements instead of s(∆bx +∆by).

57

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

Figure 4.3: Basic Scheme for Matrix Multiplication Z = XY
Each thread block computes one submatrix of Z. A single entry of each submatrix corresponds to one
thread that iteratively computes the inner product in groups of size ∆bk.

The interim result of the segmented inner product is stored per thread in a local accumulator that is

finally written to Z in global memory. Moreover, we have chosen square blocks for a start in Algo-

rithm 4.4, i.e. ∆b := ∆bx = ∆by = ∆bk.

58

4.2. MATRIX MULTIPLICATION

Algorithm 4.4: Basic Approach for Matrix Multiplication (mmul1)

Input:

X,Y: input matrices

// initialization

2 shared complex shX[∆b][∆b]

shared complex shY[∆b][∆b]

4 complex accu = (0,0)

6 for each segment i do

// load required data into shared memory

8 shX[ty,tx] = X{by,i}[ty,tx]

shY[ty,tx] = Y{i,bx}[ty,tx]

10 synchronize

12 // compute partial inner product

for k = 0 to ∆b-1 do

14 accu += shX[ty,k] * shY[k,tx]

end

16 synchronize

end

18

Z{by,bx}∆b[ty,tx] = accu // write accu to Z

Output:

Z = X * Y

The synchronize operation at line 10 assures that all required input elements are loaded into

shared memory and can be processed. In the same way, all threads have to be done computing the

partial inner product before the shared memory is overwritten (see line 16).

The basic approach uses 16 registers and buffers 2∆b2 complex numbers in shared memory. A

single complex number consists of two FP numbers of 4 Byte (B) each. The amount of used shared

memory therefore amounts to 16∆b2 Byte. The CUDA Occupancy Calculator [58] might help to

“optimize” the choice of the block size ∆b in terms of MP warp occupancy. As already explained,

though, occupancy is only one factor besides many others and maximizing it does not always result

in an optimal overall performance! For this kernel ∆b = 16 is a good choice, i.e. there are ∆b2 = 256

threads per block and approximately 4 kB of shared memory per block, which results in an occupancy

of 67%.

59

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

4.2.2 Improved Kernels

Our first attempt was to achieve higher arithmetic intensity by reusing shared data within each thread

and hence avoid redundant memory accesses. The thread blocks remain at the same size ∆b×∆b but

the output matrix Z is now segmented into square tiles with a side length of 2∆b as illustrated in

Figure 4.4.

Figure 4.4: Adjusted Scheme for Matrix Multiplication Z = XY
Each thread block computes one Z-tile of size 2∆b× 2∆b. A single thread iteratively computes four
elements.

60

4.2. MATRIX MULTIPLICATION

Each thread loads two elements of X and Y into shared memory in each iteration of the inner

product and computes four elements of Z as there are four times more output entries in a Z-block than

threads in this case. The according kernel is implemented as described in Algorithm 4.5.

Algorithm 4.5: Improved Approach for Matrix Multiplication (mmul2)
Input:

X,Y: input matrices

// initialization

2 shared complex shX[2∆b][∆b]

shared complex shY[∆b][2∆b]

4 complex accu[4] = {(0,0),(0,0),(0,0),(0,0)}

6 for each segment i do

// load required data into shared memory

8 shX[ty,tx] = X{by,i}2∆b[ty,tx]

shX[ty+∆b,tx] = X{by,i}2∆b[ty+∆b,tx]

10 shY[ty,tx] = Y{i,bx}2∆b[ty,tx]

shY[ty,tx+∆b] = Y{i,bx}2∆b[ty,tx+∆b]

12 synchronize

14 // compute partial inner product

for k = 0 to ∆b-1 do

16 accu[0] += shX[ty,k] * shY[k,tx]

accu[1] += shX[ty+∆b,k] * shY[k,tx]

18 accu[2] += shX[ty,k] * shY[k,tx+∆b]

accu[3] += shX[ty+∆b,k] * shY[k,tx+∆b]

20 end

synchronize

22 end

24 // write results to Z

Z{by,bx}∆b[ty,tx] = accu[0]

26 Z{by,bx+∆b}∆b[ty,tx] = accu[2]

Z{by+∆b,bx}∆b[ty,tx] = accu[1]

28 Z{by+∆b,bx}∆b[ty,tx+∆b] = accu[3]

Output:

Z = X * Y

As there are many more indices to compute, this kernel needs 27 registers per thread, which is quite

much and lowers the number of concurrently processed blocks per MP according to Equation 3.1. The

amount of shared memory is approximately twice as high compared to the basic approach, i.e. 8 kB

for ∆b = 16. All in all, the (reasonably) increased utilization of shared memory and registers scales

down the occupancy to 33%. Nevertheless, the overall performance turns out to be much better than

61

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

mmul1 (see Chapter 5.1). As already mentioned, high occupancy is desirable but no absolute must! In

this case, benefits due to enhanced data sharing outweigh the rather poor occupancy.

In a next step, we contemplate algorithm mmul2 with respect to shared memory access and bank

conflicts in particular. For this purpose, we have to go into more detail at first.

Shared memory is organized in 16 banks of 32 bit bandwidth per two clock cycles. Successive 32-bit

words in shared memory space are assigned to successive banks that can be accessed simultaneously

by a half-warp5 as long as threads access distinct banks. Otherwise, access operations have to be

serialized in general except for a few cases [61]. One of those exceptions worth mentioning is the “one-

for-all” situation, i.e. all threads of a half-warp access exactly the same address in shared memory. This

access is not decomposed into 16 separate conflict-free requests but performed in parallel. Moreover,

it is important to know that bank conflicts may occur only for threads within the same half-warp.

Now we get back to our actual algorithm and concentrate on the computation of the inner product

in lines 16 to 19 of Algorithm 4.5. Each thread computes four elements located in distinct output

blocks of size ∆b×∆b (see Figure 4.4). It is adequate to examine only the first computation (line 16)

since the situation is the same for the others.

A single block row rb consists of ∆b = 16 threads with fixed ty = rb and tx ∈ {0, · · · ,15}. In other

words, each block row forms a half-warp and two consecutive rows a warp.

Consider the situation in line 16 for the first half warp:

for k = 0 to ∆b-1 do

accu[0] += shX[ty,k] * shY[k,tx]

// [...]

end

The access to shX only depends on ty and k which are equal for all threads. The whole half-warp,

thus, accesses the same address in shared memory, which is the “one-for-all” situation mentioned

above. By contrast, the read operation on shY depends on varying tx. Complex numbers are linearly

aligned in shared memory and span two consecutive banks each (64 bit). Consequently, there are two

32-bit read operations involved in a single 64-bit request accessing two consecutive banks in shared

5first or second 16 threads of a warp

62

4.2. MATRIX MULTIPLICATION

memory. The resulting bank access pattern for shY of a half-warp is listed in Table 4.3.

tx
#op 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bank
1 00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
2 01 03 05 07 09 11 13 15 01 03 05 07 09 11 13 15

Table 4.3: Access Pattern for shY with Bank Conflicts

It becomes clear that in the first 32-bit operation only banks with even indices are involved and odd

indices in the second one, respectively, resulting in half memory throughput.

Luckily, we can easily resolve these 2-way bank-conflicts by padding shY with 32 bits every eight

complex numbers. In this way, we obtain the conflict-free access pattern for shY sketched in Ta-

ble 4.4.

tx
#op 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bank
1 00 02 04 06 08 10 12 14 01 03 05 07 09 11 13 15
2 01 03 05 07 09 11 13 15 02 04 06 08 10 12 14 00

Table 4.4: Conflict-Free shY Access Pattern for ty ∈ {0,4,8,12}

The shY access pattern now also depends on ty because of the padding bytes. To make Table 4.4 uni-

versally valid, each bank index table entry i has to be considered as i ′ = (i+4 · ty) mod 16 as a single

row of the unpadded shY has 2∆b elements and therefore has to be padded with four 32-bit blocks in

order to avoid bank conflicts for the whole computation of the inner product.

We have to adjust only few lines of Algorithm 4.5 to incorporate conflict-free access to shared mem-

ory. The additional four 32-bit segments for shY correspond to two additional complex numbers per

row. To simplify matters, we assume shY[ty,tx]off to denote the element of shY in row ty and col-

umn tx with respect to 32-bit offset off. In the practical implementation this can easily be done using

pointer arithmetic.

63

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

Algorithm 4.6: Improved Approach for Matrix Multiplication (mmul3)
Input:

X,Y: input matrices

// initialization

2 shared complex shX[2∆b][∆b]

shared complex shY[∆b][2(∆b+1)]

4 complex accu[4] = {(0,0),(0,0),(0,0),(0,0)}

6 o1 = tx/8; o2 = (tx+∆b)/8 // offsets for padding

8 for each segment i do

// load required data into shared memory

10 shX[ty,tx] = X{by,i}2∆b[ty,tx]

shX[ty+∆b,tx] = X{by,i}2∆b[ty+∆b,tx]

12 shY[ty,tx]o1 = Y{i,bx}2∆b[ty,tx]

shY[ty,tx+∆b]o2 = Y{i,bx}2∆b[ty,tx+∆b]

14 synchronize

16 // compute partial inner product

for k = 0 to ∆b-1 do

18 accu[0] += shX[ty,k] * shY[k,tx]o1
accu[1] += shX[ty+∆b,k] * shY[k,tx]o1

20 accu[2] += shX[ty,k] * shY[k,tx+∆b]o2
accu[3] += shX[ty+∆b,k] * shY[k,tx+∆b]o2

22 end

synchronize

24 end

26 // write results to Z

Z{by,bx}∆b[ty,tx] = accu[0]

28 Z{by,bx+∆b}∆b[ty,tx] = accu[2]

Z{by+∆b,bx}∆b[ty,tx] = accu[1]

30 Z{by+∆b,bx}∆b[ty,tx+∆b] = accu[3]

Output:

Z = X * Y

Please note, that (integer) division is particularly costly and can be replaced by a bitwise shift opera-

tion in line 6. The number of registers remains the same compared to algorithm mmul2 and the amount

of utilized shared memory hardly increased without any influence on the occupancy.

Maybe you wonder why we have not applied the padding technique to shX but accept bank conflicts

in lines 10 and 11. Basically, there are two reasons for this decision. On the one hand, bank conflicts

while accessing global memory are all but negligible because of high latency. On the other hand, we

would have to compute a new offset for each loop iteration in lines 18 to 21 based on the shX column

index k in contrast to o1 and o2 that have to be computed only once per thread. Therefore, padding

64

4.2. MATRIX MULTIPLICATION

shX is a change for the worse, whereas resolving bank conflicts for shY results in a considerable gain

of performance.

Finally, we tried some non-square block-layouts with unexpected effects. For this purpose, we

have to distinguish between ∆bx, ∆by and ∆bk introduced in Equation 4.6. Moreover, ∆bx is chosen as

a multiple of a small integer µ. The output matrix Z is decomposed into tiles of size ∆bx×∆by that are

assigned to thread blocks of size ∆bx/µ×∆by. Each thread computes µ elements in a single column

of a tile but the basic concept remains the same. The whole kernel is specified in Algorithm 4.7.

Algorithm 4.7: Improved Approach for Matrix Multiplication (mmul4)
Input:

X,Y: input matrices

∆bk: block size for iterated inner product (≤ ∆by)

s: width of X and height of Y

// initialization

2 shared complex shX[∆bx][∆bk]

complex accu[µ];
4

for i = 0 to µ-1 do

6 accu[i] = (0,0);

end

8

for i = 0 to s/∆bk-1 do

10 // load required data into shared memory

if tx < ∆bk then

12 for j = 0 to µ-1 do

shX[µ*ty+j,tx] = X{by,i}∆bx
∆bk

[µ*ty+j,tx]
14 end

end

16 synchronize

18 // compute partial inner product

for k = 0 to ∆bk-1 do

20 for j = 0 to µ-1 do

accu[j] += shX[ty*µ+j,k] * Y{i,bx}∆bk
∆by

[k,tx]

22 end

end

24 synchronize

end

26

// write results to Z

28 for i = 0 to µ-1 do

Z{by,bx}∆bx
∆by

[ty+i,tx] = accu[i]

30 end

Output:

Z = X * Y

65

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

We tried several configurations for ∆bx, ∆by, ∆bk, and µ with respect to some restrictions:

• ∆bx∆by
µ ≤ 512 (maximum number of threads per block)

• ∆bk ≤ ∆by (enough threads to load shX, see line 13)

• ∆bx∆bk� 211 (limited amount of shared memory)

The preparatory loading of Y into shared memory (shY) is omitted as narrow, wide blocks turned

out to perform best particularly for large input matrices. Otherwise, ∆bx/µ×∆by threads in a block

would have to load shX and shY of size ∆bx×∆bk respectively ∆bk×∆by. This task requires additional

index computations resulting in an increased number of registers per thread. In combination with the

increased amount of shared memory, this causes poor occupancy.

We finally decided for ∆bx = µ = 4, and ∆by = ∆bk = 64. In other words, a block consists of one

single row of 64 threads for this configuration, which is illustrated in Figure 4.5. Therefore, the use of

shY is redundant anyway as each thread works on different Y columns. Moreover, the increased block

width benefits the utilization of shX. All in all, we accomplished our final kernel using 24 registers

per thread and approximately 2 kB of shared memory.

Finally, some additional remarks about the for-loops in Algorithm 4.7. The NVIDIA compiler

nvcc supports simple loop unrolling since version 1.1 [63]. Needless to say, that the compiler can

unroll only loops with a trip count known at compile time. The parameters ∆bx, ∆by, ∆bk, and µ

are incorporated as templates so that the for-loops in lines 5, 12, 20, and 28 can be unrolled. Using

previous versions of nvcc, however, loops have to be unrolled manually, which is quite tedious.

4.2.3 CUBLAS

For the multiplication of complex-valued matrices, the higher-level library CUBLAS provides the

complex general matrix multiplication (cublasCgemm()) as the only single-precision complex BLAS3

function [56]. It takes two complex matrices X and Y and two complex numbers c1 and c2 as input

66

4.2. MATRIX MULTIPLICATION

Figure 4.5: Optimized Scheme for Matrix Multiplication Z = XY
For ∆bx = µ, the blocks consist of ∆by threads each computing µ elements of the corresponding ∆bx×
∆by submatrix of Z.

and performs the following general operation:

Z = c1 · opX(X) · opY (Y) + c2 · Z ,

where c1,c2 ∈ C and op(•) ∈
{
• , •T , •H} .

It is important to know that CUBLAS expects matrices to be stored in column-major order (see Sec-

tion A.2). This has to be taken into consideration for the function call. If we want to compute for

instance Z = X ·Y for row-major aligned matrices this translates to

Z̃ = (X ·Y)T = Y T ·XT = 1 · Ỹ · X̃ +0 · Z̃

67

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

for cublasCgemm(), where X̃ , Ỹ , and Z̃ denote the matrix data X , Y , and Z reinterpreted as column-

major aligned by CUBLAS.

According to NVIDIA developers, best performance is achieved in CUDA 1.1 on currently ship-

ping hardware if all matrix dimensions are multiples of 16 and the matrices’ addresses are aligned

to 128-byte boundary. Moreover, NVIDIA published the source code of the CUBLAS implementa-

tion in February 2008 [62]. We already concentrated on incorporating our implementations into the

GRAPPA reconstruction pipeline of Siemens Medical Solutions at that time. However, it is definitely

worth contemplating kernel details particularly with regard to optimizations for small matrices.

4.2.4 Special case

Up to now, we only considered the general multiplication of two complex-valued matrices. If we take

a closer look at the matrix multiplications in Listing 4.1 for the GRAPPA autocalibration we come

across the special case in Step 4:

V̂ = A ·AH .

The resulting matrix V̂ is a self-adjoint matrix also known as Hermitian matrix, i.e. V̂ = V̂ H . We can

benefit from this “Hermitian symmetry” as the lower left part of the matrix can easily be deduced

from the upper right one (or vice versa) by computing the complex conjugate of each element, i.e. flip

the sign of the imaginary part.

We have tried several different possibilities to map this problem to CUDA. The final result in

Algorithm 4.8 is substantially based on mmul4 but with a quadratic block layout with ∆b := ∆bx =

∆by = ∆bk. The regular grid is retained for the kernel execution and covers the whole output matrix Z

to keep index calculations based on block indices within threads as simple as possible. Blocks of the

lower left grid part (bx< by) immediately return without doing anything. Blocks on the grid diagonal

(bx = by) proceed as in mmul4, whereas the remaining ones of the (strict) upper right part (bx >

by) imply duplicate writes to global memory for each computed element with respect to Hermetian

symmetry. It is, in fact, even possible to use the symmetry property within diagonal blocks. However,

the resulting performance slightly decreases due to more complex branching.

68

4.2. MATRIX MULTIPLICATION

Moreover, it is beneficial for the computation of Z = A ·AH to store AT separately in advance.

We will see that AT is needed for the preceding normalization stage, anyway. Using the transposed

matrix as additional input parameter for the kernel allows for completely coalesced memory access

in lines 17 and 25. The computation of the inner product requires a slightly modified multiplication

operator in line 25 to incorporate the conjugate complex part of AH :

z1⊗ z2 := z1 · z∗2 , z1,z2 ∈ C ,

where z∗2 denotes the conjugate complex of z2.

Algorithm 4.8: Improved Matrix Multiplication Z = X ·XH (mmul5)
Input:

X: input matrix

XT: input matrix (X=XT)

∆b: block size

s: width of X

1 if bx < by then

return

3 end

5 // initialization

shared complex shX[∆b][∆b]

7 complex accu[µ];

9 for i = 0 to µ-1 do

accu[i] = (0,0);

11 end

13 for i = 0 to s/∆b-1 do

// load required data into shared memory

15 if tx < ∆b then

for j = 0 to µ-1 do

17 shX[µ*ty+j,tx] = X{by,i}∆b[µ*ty+j,tx]
end

19 end

synchronize

21

// compute partial inner product

23 for k = 0 to ∆b-1 do

for j = 0 to µ-1 do

25 accu[j] += shX[ty*µ+j,k] ⊗ XT{i,bx}∆b[k,tx]

end

27 end

synchronize

29 end

69

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

31 // write results to Z

// fill upper right part

33 for i = 0 to µ-1 do

Z{by,bx}∆b[ty,tx] = accu[i]

35 end

37 // fill lower left part w.r.t. Hermitian symmetry

if bx > by then

39 for i = 0 to µ-1 do

Z{bx,by}∆b[tx,ty] = conjComplex(accu[i])

41 end

end

Output:

Z = X * XH

Roughly speaking, this approach halves the number of operations and execution time as each result

is used twice. Unfortunately, there is no possibility to take advantage of the special matrix structure

using CUBLAS.

It is even possible to save the write operations to global memory in line 40 if the inversion algorithm

inherently makes use of the Hermitian symmetry to compute V and requires only the upper triangular

submatrix of the regularized matrix AAH , e.g. Cholesky Decomposition (see section 5.2).

4.3 Initialization and Normalization

The first steps in the GRAPPA autocalibration stage are the initialization and normalization of A and

B according to Listing 4.1 on page 47. In the following, we stick to the basic reconstruction approach

(findWs) described in Algorithm 4.2. Nevertheless, the findings of the following analysis can easily

be applied to findWsImproved in a similar way.

4.3.1 Initialization

During initialization, the matrices A and B are filled with proper ACS elements following the pattern

of Equation 4.2. Initializing matrices on device is worthwhile simply for the reason that the amount

of data to be transferred from host to device is minimized to ACS data6. As there are absolutely no

arithmetic operations on the input data, there is no possibility to hide high latency access to global

memory and the kernels are band-limited.
6Matrices A and B contain redundant information.

70

4.3. INITIALIZATION AND NORMALIZATION

One of the most challenging tasks is to choose a proper thread block layout based on GRAPPA

parameters with respect to performance issues and CUDA limitations.

We have chosen the grid layout as NACS
b ×Nc with ∆s threads per block for both kernels. A single

thread (tx,ty) in block (bx,by) initializes Nb elements of A and R−1 entries of B as listed in Table 4.5

with respect to Equation 4.1. After all blocks have finished, A and B of Equation 4.2 are initialized for

a single segment starting at ACS column kx0 .

Kernel Block (bx,by) Thread (tx,ty)

init A Âky0
{by,0}∆s

[
Sby(ky0 +bx+bR∆ky, kx0 + tx ∆kx)

]0≤b<Nb

init B B̂ky0
{by,0}∆s

[
Sby(ky0 +bx+(∆ACS + i)∆ky, kx0 + tx ∆kx)

]1≤ i<R

Table 4.5: Dispatching for Initialization of A and B

The regular structure of both matrices actually allows for loading ACS elements only once and

writing them several times to their destination addresses in A and B. On the one hand this technique

saves global memory loads, on the other hand this requires complex index calculations and unco-

alesced global memory writes, which finally results in poor performance. Another approach stores

ACS data in a texture in order to benefit from texture cache effects. Unfortunately, there is a lack of

locality in the access pattern so that the cache effect does not become operative.

4.3.2 Normalization

Normalizing A and B requires the following measure pi for all submatrices of B corresponding to ACS

segments i according to line 12 in Algorithm 4.2:

pi = ∑
e∈B{0,i}∆s

‖e‖2
2 , ∀0≤ i <

Ncol

∆s
, (4.7)

where the sum runs over all complex-valued elements of B{0, i}∆s.

This kind of operation is also known as reduction since all elements (of the submatrix) are processed

by the same operator (squared norm) and then reduced (summed up) resulting in a single complex

number. In the CPU-based version of findWs the reduction can easily be done during the initialization

71

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

of the submatrices. In the corresponding kernels, however, this is not as simple due to read-after-write

hazards and the SPMD architecture. We decided to keep the initialization and the reduction separate

even if it is possible to perform parts of the reduction during the initialization7.

The highly optimized kernel reduce5() developed by Harris [25] provided a basis for the reduc-

tion problem. It is part of the sample projects in the CUDA 1.1 SDK [63]. The kernel expects an array

of integers as input and computes the element-wise sum. The number of integers is assumed to be

a power of two8 since a tree-based approach is used within the blocks. Harris applied sophisticated

optimization techniques such as loop unrolling, template programming, and bank conflict avoidance

with considerable results. For further particulars and a detailed kernel analysis, please refer to [25].

We merely adjusted the kernel to handle complex numbers and to compute the sum of squared norms

for all submatrices of B according to Equation 4.7.

Since the reduction kernel works on a linear array, matrix B has to be transposed and possibly

padded to a power of two in advance so that the submatrices B{0, i}∆s of Equation 4.7 are linearly

aligned in global memory. We decompose B into tiles of ∆b× ∆b elements (∆b = 16) for Algo-

rithm 4.9. Each tile is transposed by a thread block of the same size. It is important to take account

of coalesced read and write access to global memory as the kernel is memory-bound since latency

can not be hidden because of the very poor arithmetic intensity. Therefore, each half-warp writes a

single tile row into shared memory, at first. After synchronization a single column of the buffered tile

in shared memory is written to the corresponding row of the destination tile of BT . The additional

column of shX in line 2 avoids bank conflicts during the column-wise readout in line 9.

Once the partial sums pi of Equation 4.7 are computed, the elements of A and B have to be multi-

plied with the corresponding normalization coefficients ψi = pη/2
i . Strictly speaking, we normalize the

transposed matrices AT and BT for reasons of coalesced memory access using Algorithm 4.10 with a

(NbNc)× (Ncol/∆s) grid for AT and a (R−1)Nc× (Ncol/∆s) grid for BT , respectively, with ∆s threads

per block.

7Each initialization thread could compute the partial sum of its Nb elements and store this interim result to a separate location
in global memory that has to be further processed afterwards.

8possibly requires padding with zeros

72

4.3. INITIALIZATION AND NORMALIZATION

Algorithm 4.9: Matrix Transpose (mTrans)
Input:

X: input matrix

∆b: block size

1 // initialization

shared complex shX[∆b][∆b+1]

3

// load data into shared memory

5 shX[ty,tx] = X{by,bx}∆b[ty,tx]

synchronize

7

// write to XT

9 Z{bx,by}∆b[ty,tx] = shX[tx,ty]

Output:

Z = XT

Algorithm 4.10: Matrix Normalization (mNorm)
Input:

X: input matrix (interpret as one-dimensional array)

p: array containing partial sums pi
η: normalization parameter

// initialization

2 shared float ψ

4 // compute ψ

if tx==0 then

6 ψ = (p[by])η/2

end

8 synchronize

10 // normalize X

int idx = bdx * gdx * by + bdx * bx + tx

12 X[idx] = X[idx] * ψ

Output:

X: normalized matrix

The index calculation in line 11 of Algorithm 4.10 for the normalization of X in line 12 is slightly

weird: For X = AT , the matrix consists of tiles of size ∆s×NbNc. Blocks of equal block index by

normalize a single tile. Each block processes ∆s consecutive elements of a tile (one per thread) and

not a single column, which would be much more intuitive since the number of threads per block

equals the number of rows in a tile. Therefore, the memory access is coalesced but the tiled structure

is broken, which makes the access appear rather oddly.

73

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

For the sake of completeness, we should mention that the regularization of V̂ = A ·AH in line 4 of

Listing 4.1 is done similarly:

1. Align diagonal elements of V̂ linearly in global memory with respect to padding

2. Compute sum of squared norms (reduction)

3. Calculate λ (see line 29 in Algorithm 4.2)

4. Add λ to diagonal elements of V̂

4.4 Entire Autocalibration Stage

Algorithm 4.11 outlines how the different kernel programs are finally combined to the whole GRAPPA

autocalibration pipeline. To point out that most operations are performed on the device now they are

marked with (d).

Algorithm 4.11: GRAPPA Autocalibration Pipeline Using GPGPU (findWsGPU)
Input:

S: ACS data

GRAPPA parameters (see Symbols in Appendix 6.3)

1 allocate device memory for matrices and intermediate results w.r.t padding requirements

3 upload S to device

5 for each segment do

(d) set up matrices A and B using S

7

// normalize A and B

9 (d) transpose A and B

(d) realign BT to power of 2 per segment block

11 (d) reduction on 2k aligned BT: sum of squared norms

(d) normalize AT and BT

13 (d) transpose AT and BT

15 (d) U = B AH

17 // V = (A AH - λ E)-1

(d) V̂ = A AH

19 (d) realign diagonal elements of V̂ linearly to power of 2

(d) reduction on Diag(V̂): sum of squared norms

21 (d) regularize V̂

23 download V̂reg (regularized V̂) to host memory

V = V̂−1
reg

25 upload V to device memory

74

4.4. ENTIRE AUTOCALIBRATION STAGE

27 (d) W = U · V

29 download W to host memory

Output:

W: reconstruction coefficients

There is a CUDA and a CUBLAS version of findWsGPU. The former uses mmul4 for matrix

multiplication and mmul5 for the special case in line 18, the latter is based on cublasCgemm() but

can not benefit from the Hermitian symmetry of V̂ as already mentioned in Section 4.2.4. If B and A

are stored back-to-back in global memory, however, a single cublasCgemm() call can process both

multiplications in lines 15 and 18:

15: U = B ·AH

18: V̂ = A ·AH
⇐⇒

 U

V̂

=

 B

A

 ·AH .

Since the advantages of graphics hardware become apparent particularly for large input data, this

methodology improves the overall performance.

Needless to say, that the reconstruction weights do not necessarily have to be transferred back

to host memory (line 29) if no further host-based post-processing is necessary and the subsequent

reconstruction stage is executed on the device, too [20].

75

CHAPTER 4. GPGPU FOR GRAPPA AUTOCALIBRATION

76

Chapter 5

Results

Finally, we compare our GPU-accelerated approaches to current CPU-based implementations based

on the following hardware configurations for benchmark tests and validation:

1. Intel Core 2 6700 dual-core CPU at 2.66 GHz, 2x2 MB of L2 cache, 2 GB of RAM (333 MHz),

NVIDIA GeForce 8800 GTX GPU with CUDA 1.1 driver, OpenSuse 10.3 (Linux)

2. 2x Intel Xeon 5150 dual-core CPU at 2.66 GHz, 2x2 MB of L2 cache, 4 GB of RAM (333 MHz),

NVIDIA GeForce 8800 GTX GPU with CUDA 1.1 driver, Windows XP Professional 64-bit

Edition

Diagrams and figures refer to these machines as CPU1/GPU1 and CPU2/GPU2 respectively.

On the Windows machine we used Microsoft Visual Studio 8 (MSVC8) to compile 32-bit binaries

with enabled compiler flags /Ox /fp:fast /SSE2. Accordingly, the GNU C Compiler gcc (version

4.1.2) was used on the Linux machine merely with -O3 -funroll-loops -mfpmath=sse2 -msse2

-ffast-math -mtune=prescott. We want to point out that the benchmark tests are carried out with

single-threaded CPU executables unless explicitly mentioned otherwise. Moreover, it is important to

know that the graphics hardware has to be initialized before the very first CUDA call, which takes ap-

proximately 500 ms. As this has to be done only once for all subsequent computations and can easily

be hidden in practical applications, the initialization time is excluded from time measurements in con-

trast to allocation and transfer times even if they are not directly concerned with the core computation

but indispensable. These secondary operations are solely ignored for core performance considerations.

77

CHAPTER 5. RESULTS

5.1 Matrix Multiplication

First of all, we want to compare the different GPU implementations for complex-valued matrix mul-

tiplication of Section 4.2 to get an impression of how the performance is influenced by different op-

timizations. The parameter configuration of the CUDA kernels mmul[1-4] is ∆b = 16, ∆bx = µ = 4,

and ∆by = ∆bk = 64 for the multiplication of complex-valued matrices with r = t = 1024 and variable

inner dimension s according to Equation 4.6. It is remarkable that the basic approach already yields

0 512 1024 1536 2048
0

50

100

150

200

250

inner dimension s

tim
e

[m
s]

mMul1
mMul2
mMul3
mMul4
cublasCgemm

(a) Overall Time

0 512 1024 1536 2048
0

20

40

60

80

100

120

inner dimension s

G
F

lo
p/

s

mMul1
mMul2
mMul3
mMul4
cublasCgemm

(b) Core Performance

Figure 5.1: Comparison of mmul[1-4] and cublasCgemm() for fixed r = t = 1024 on GPU1.

remarkable performace gains. In spite of increased resource requirements (shared memory and regis-

ters) and reduced occupancy, mmul2 performs 8% better due to enhanced data sharing. Avoiding bank

conflicts in mmul3 saves another 20% in this case. The jagged shape of mmul4 is caused by additional

operations to cancel padding bytes. They are required as the measurements are taken with a step size

of 32 but the inner dimension has to be a multiple of ∆by = 64. It performs more than 50% better than

the basic approach and even 20% better than CUBLAS for this configuration. We will see, however,

that things look completely different particularly for smaller input matrices as mmul4 is better suited

for “large” matrices.

The proper computation of the core performance in Figure 5.1(b) requires ptx code analysis to get

the number of FP operations contributing to the actual matrix product. The NVIDIA compiler maps a

single iteration of the inner product to five low-level instructions (three times madd, one mul, and one

sub). The overall costs of the matrix multiplication are therefore given in Equation 4.5 with ϑ = 5.

78

5.1. MATRIX MULTIPLICATION

The optimized kernel mmul4 is still memory-bound and therefore reaches only 30% of the theoretical

peak performance of GPU1.

The next experiment opposes the optimized kernels to elaborate CPU-based implementations for

matrix multiplication. We used the BLAS Level 3 operation cblas_cgemm() provided by the Intel

Math Kernel Library 10.0 (MKL) [37] with built-in parallelism to obtain excellent scaling on multi-

processors. The multi-core ready math routines are threaded using OpenMP [66] and highly optimized

for Intel processors. The C code was compiled with the Intel C++ Compiler Professional Edition for

Linux [36] with additional optimization flags for CPU1 (-march=core2 -axT -xT) yielding 5 to 10%

performance gain compared to the GNU compiler. Figure 5.2 lists the results of the benchmark test

for square input matrices of different size.

The overall time increases cubically with the dimension as expected according to Equation 4.5

but at different rates. Obviously, MKL scales quite well for the dual-core architecture of CPU1 if

we compare the curves for multi-threaded and single-threaded execution in Figure 5.2(a). The core

performance of cublasCgemm() and mmul4 is again limited by approximately 80 GFlop/s respec-

tively 100 GFlop/s as before. Since the Hermitian structure of A ·AH requires only half the number of

operations, the core performance of mmul5 is more than doubled compared to the general CUBLAS

approach, 60 to 70% better than mmul4, and still increases for larger matrices. Unfortunately, nei-

ther cublasCgemm() nor cblas_cgemm() are able to handle this special case. All in all, the kernels

perform 11 (mmul4) through 17 times (mmul5) faster than the single-threaded MKL approach. For

accuracy verification the relative error measure according to Equation 5.1 is used to compare output

matrices Z and Ẑ:

∆(Z, Ẑ) =
1
r t

r

∑
i=1

t

∑
j=1

‖Z(i, j)− Ẑ(i, j)‖
‖Ẑ(i, j)‖

. (5.1)

Considering the fact that single-precision FP operations have about six decimal digits of precision1,

the relative error in Figure 5.2(d) is negligible.

1actually log10(223)∼ 6.92 digits of precision

79

CHAPTER 5. RESULTS

0 512 1024 1536 2048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

dimensions r=s=t

tim
e

[s
]

MKL (st)
MKL (mt)
mmul4
cublasCgemm
mmul5

(a) Overall Time

0 512 1024 1536 2048
0

20

40

60

80

100

120

140

160

180

dimensions r=s=t

G
F

lo
p/

s

MKL (st)
MKL (mt)
mmul4
cublasCgemm
mmul5

(b) Core Performance

0 512 1024 1536 2048
0

5

10

15

20

25

30

35

40

dimensions r=s=t

S
pe

ed
up

 C
P

U
/G

P
U

MKL (st) / mmul4
MKL (mt) / mmul4
MKL (st) / mmul5
MKL (mt) / mmul5

(c) Speedup

0 512 1024 1536 2048
1

2

3

4

5

6

7
x 10

−7

dimensions r=s=t

E
rr

or

mmul4/5
cublasCgemm

(d) Relative Error

Figure 5.2: Comparison of mmul[4,5] and cublasCgemm() to single-threaded (st) and multi-
threaded (mt) Intel MKL cblas_cgemm() for r = s = t on CPU1/GPU1.

Particularly with regard to the algorithms’ field of application, the next comparative test chooses

matrix dimensions according to usual parameters for GRAPPA autocalibration as listed in Table 4.1.

Current MR systems usually work with up to 32 input channels and small acceleration factors. The

resulting matrices A and B have only few rows but many columns. Let us assume Nc = 32, Nb = 4,

R = 5 and hence r = t = 128. The results for this configuration are presented in Figure 5.3.

Our kernel programs are not able to harness the massively parallel performance potential of graphics

hardware in this situation as only 64 blocks can be used for the execution of mmul4, which is much

80

5.1. MATRIX MULTIPLICATION

0 512 1024 1536 2048
0

2

4

6

8

10

12

14

inner dimension s

tim
e

[m
s]

MKL (st)
MKL (mt)
mmul4
cublasCgemm
mmul5
mmul4 (core)
cublasCgemm (core)

(a) Overall Time

0 512 1024 1536 2048
0

10

20

30

40

50

60

inner dimension s

G
F

lo
p/

s MKL (st)
MKL (mt)
mmul4
cublasCgemm

(b) Core Performance

0 512 1024 1536 2048
0

2

4

6

8

10

12

14

16

18

20

inner dimension s

S
pe

ed
up

 C
P

U
/G

P
U

MKL (st) / mmul4
MKL (mt) / mmul4

(c) Speedup

0 512 1024 1536 2048
1

2

3

4

5

6

7
x 10

−7

inner dimension s

E
rr

or

mmul4
cublasCgemm

(d) Relative Error

Figure 5.3: Comparison of mmul[4,5] and cublasCgemm() to single-threaded (st) and multi-
threaded (mt) Intel MKL cblas_cgemm for r = t = 128 on CPU1/GPU1.

too less to hide latency. This configuration is even worse for mmul5 executed by 36 blocks. The core

performance as well as the tremendous speedup are reduced by 40 to 60% compared to Figures 5.2(b)

and 5.2(c).

We tried to split up the computation of the inner product into several parts to get more blocks. All

intermediate matrices though have to be written back to global memory before they can be merged

(add entries element-by-element) as there is no possibility for synchronized write operations to global

memory for threads of different blocks in CUDA. The resulting performance was even worse.

81

CHAPTER 5. RESULTS

Another problem of small input data is the overhead for memory allocation and data transfers

between host and device. In this case, the ratio of core computation time (dashed line) and overall time

(solid line) in Figure 5.3(a) is 50 to 60% in contrast to 10 to 20% for larger input data in Figure 5.2.

In terms of core time, the optimized kernel mmul4 is faster than cublasCgemm() in contrast to the

overall time as additional time is spent on canceling out padding bytes for mmul4, which is excluded

from core time. We explicitly mention this fact since padding bytes have to be set to zero in the final

GRAPPA autocalibration implementation, anyway, e.g. for matrix transpose operations, no matter

which approach is used for matrix multiplication. This requires an initial cudaMemset() call whose

runtime virtually does not change due to few additional padding bytes potentially required for mmul4.

As the measurements show, the multi-threaded MKL approach does not scale as well as for large

input data. The oscillating curve progression is not an error in measurement but reproducible. It is

remarkable that the core performance of both the single- and multi-threaded approach hardly differ at

all.

5.2 Matrix Inversion

Besides matrix multiplication, the matrix inversion in step 4 of the GRAPPA autocalibration in List-

ing 4.1 on page 47 is the second time-critical operation involved as we will see in the next section.

The time for CPU-based inversion of V̂ = AAH − λE far outweighs the total runtime of the GPU-

accelerated autocalibration stage (see Figure 5.5) even if the matrix to invert is rather small, for in-

stance 128× 128 for Nb = 4 and Nc = 32. Therefore, we tried to translate the inversion algorithm to

the graphics hardware.

The simplest approach to invert matrices is the Gaussian elimination with partial pivoting to im-

prove the numerical stability of the algorithm. However, this is not the best approach in this case

since V̂ is a Hermitian matrix. For this reason, it is possible to apply the Cholesky Decomposition [17]

described in algorithm 5.1 to solve the linear equation system

V̂ T W T = BT

for W T by forward and backward substitution.

82

5.2. MATRIX INVERSION

Algorithm 5.1: Matlab Implementation for Outer Product Cholesky Decomposition (cholDec)

Input:

X: Hermitian matrix

n=size(X,1);

2

% init L with lower left part of A

4 L=zeros(n);

for i=1:n

6 L(i:n,i)=X(i:n,i);

end

8

for k=1:n

10 % normalize kth column

L(k:n,k)=L(k:n,k)/sqrt(L(k,k));

12

% outer product iteration

14 for i=(k+1):n

L(i:n,i)=L(i:n,i) - L(i,k)*L(i:n,k);

16 end

end

Output:

L: lower triangular matrix with X=L*LH

It is difficult to parallelize the Cholesky Decomposition. The normalization in line 11 has to be done

before the outer products are computed in line 15 to adjust the remaining unprocessed elements. In

the same way, it is not possible to execute the outer for-loop over k (line 9) in parallel. Therefore, the

corresponding CUDA kernel is executed by a single block of n threads. In this way, the kernel does not

use the MPs of the graphics hardware to full capacity. Moreover, there is no possibility to benefit from

shared memory or texture cache effects for the outer product iteration. The same problems concerning

insufficient synchronization functionality also arise for the Gaussian elimination.

The second attempt uses a Simultaneous Algebraic Reconstruction Technique (SART) for the com-

putation of the inverse. This technique is originally used for CT image reconstruction [41].

Basically, SART iteratively solves a system of linear equations

A ~x = ~b (5.2)

83

CHAPTER 5. RESULTS

with known A ∈Cn×n,~b ∈Cn, and unknown~x ∈Cn. The main idea is to interpret the elements ai,k of

each row i in A as the coefficients of the hyperplane Hi:

Hi :=
{
~t ∈ Cn

∣∣∣ n−1

∑
k=0

ai,k · tk = bi

}
.

Assuming that there is a unique solution vector ~x ′ for Equation 5.2 it corresponds to the intersection

point of all hyperplanes:

~x ′ =
\

0≤i<n

Hi .

The basic version of SART follows the iterative scheme in Equation 5.3 to get an estimation for~x ′:

~x(k+1) =~x(k) +
1
n

n−1

∑
i=0

bi−A(i, :)~x(k)

A(i, :)A(i, :)T A(i, :)T , (5.3)

where k denotes the iteration index and A(i, :) is the ith row vector of A. Geometrically considered,

this scheme projects the current estimation~x(k) on each hyperplane and uses the mean of all projected

points as next estimation~x(k+1). The projections to the hyperplanes can be computed simultaneously as

they are independent of each other. The initial guess can be chosen for example as~x(0) = [1,1, . . . ,1]T

if there is no further prior knowledge. A detailed discussion of convergence properties is given in [40].

On the other hand, inverting a matrix A is nothing else but solving

A ~xi = ~ei ∀0≤ i < n ,

where~ei is the ith canonical unit vector and~xi the ith column vector of A−1. The implementation maps

the computation of a single ~xi to one block of n threads computing a single element of ~xi. Unfortu-

nately, the iterative scheme involves many inner products of length n that have to be computed per

thread, which is very slow even for small matrices due to extensive global memory read operations.

It is easily possible, indeed, to use a binary-tree approach to parallelize these computations similarly

to the reduction operation described in Section 4.3.2. In this case, each block computes a single el-

ement of ~xi. This layout, however, requires additional synchronization between blocks since the kth

iteration for ~xi has to be done before the k + 1st one starts, which is not supported in CUDA. The

synchronization between blocks can be avoided, however, by writing back intermediate results per

84

5.3. ENTIRE AUTOCALIBRATION STAGE

block and sequentially calling the same kernel for each iteration. First of all, we have implemented

a prototype in MATLAB (Mathworks Inc., USA). The SART implementation needs approximately

9500 iterations for matrices of size 128×128 per column to obtain an estimation with four digits of

precision. Accordingly, the SART-kernel has to be called 9500 times, too. The host-based inversion of

the 128×128 matrix based on Gaussian elimination with partial pivoting takes approximately 18 ms.

On the other hand, calling an “empty” kernel 9500 times without any arguments and without any

shared memory requirements already takes more than 60 ms. In other words, this overhead rules out

the parallel computation of the inner products.

All in all, our CUDA implementations for matrix inversion on GPU are much slower compared to

CPU-based algorithms due to the lack of “intra-block” synchronization in CUDA.

5.3 Entire Autocalibration Stage

Finally, we compare the GPU-based autocalibration to the C++ GRAPPA implementation for image

reconstruction in current Siemens MR systems.

First of all, some general remarks concerning the subsequent benchmark tests. There are many

parameters involved in the GRAPPA reconstruction and autocalibration pipeline with different effects

on the computational complexity and problem size. In the following, the set of default parameters

listed in Table 5.1 is taken by default if nothing else is explicitly mentioned. In order to guard against

misunderstandings we want to mention that the kernel programs have not been fine-tuned for this

special parameter set but work for virtually arbitrary parameter values.

5.3.1 Standalone Autocalibration

For a start, we extracted a standalone version of the relevant autocalibration routines to work inde-

pendently of the whole reconstruction pipeline with random input data. As the reconstruction time is

almost constant for each slice image of an MR scan, all timings are based on the computations for a

single slice image. Moreover, we would like to emphasize at this point that the performance of algo-

85

CHAPTER 5. RESULTS

Description Symbol Default Value

Image Columns Ncol 512

Input/Output Channels Nc 32

Acceleration Factor R 4

Reference Lines NACS
r 24

Block Size Nb 4

Segment Length ∆s 128

Regularization Parameter χ 0.0001

Normalization Parameter η 1.0

Table 5.1: Default Values of GRAPPA Parameters

0 256 512 768 1024 1280
0

50

100

150

200

250

300

350

400

450

500

N
col

tim
e

[m
s]

CPU1
CPU2
GPU1: CUDA/CUBLAS
GPU2: CUDA/CUBLAS

(a) Overall Time

0 256 512 768 1024 1280
0

5

10

15

20

25

30

35

40

45

N
col

S
pe

ed
up

 C
P

U
/G

P
U

effective speedup

speedup excluding
host−based inversion

GPU1: CUDA
GPU2: CUDA
GPU1: CUBLAS
GPU2: CUBLAS

(b) Speedup

Figure 5.4: Results for findWs[GPU] Depending on Ncol

rithms for matrix computation implemented in the CPU-based autocalibration stage is far from being

comparable with highly optimized libraries such as Intel MKL.

In a first test run all parameters are fixed except the image width. Figure 5.4 illustrates the results

for variable number of image columns.

The overall time for the autocalibration linearly increases with Ncol as already deduced in Table 4.2.

The curves of the CPU-based approaches can easily be extrapolated as the slope remains constant

(512: 758 ms / 881 ms, 1024: 1418 ms / 1688 ms, 1280: 1716 ms / 2044 ms). Although both machines

feature equal graphics cards, the performance apparently differs most probably because of differences

86

5.3. ENTIRE AUTOCALIBRATION STAGE

in the hardware drivers and different operating systems. We can virtually rule out a connection with

different CPU or C compiler configurations since CPU1 performs worse compared to CPU2.

The total time of the CUDA and CUBLAS version is almost the same for this configuration, which

results in equal effective speedups up to 17.5 on GPU1. Analyzing the timings for the different steps

in more detail reveals the bottleneck of the GPU-powered approaches as shown in Figure 5.5.

< 1%4%
2%

32%

8%

49%

4%
Init
Set up A / B
Power Norm
A * AH + λ * I
Inversion

U = B * AH

W = U * V

(a) findWs on CPU1: 880 ms

5%
2%

2%

7%

79%

6%< 1%

executed on host

Init
Set up A / B
Power Norm
A * AH + λ * I
Inversion

U = B * AH

W = U * V

(b) findWsGPU on GPU1: 92 ms

Figure 5.5: Breakdown of Overall findWs[GPU] Execution Time for Ncol = 512

Obviously, matrix multiplication is the most time-consuming and compute-intensive task in findWs

(85%). By contrast the bottleneck of the GPU-based execution is definitely the matrix inversion (79%)

that is still executed on the host. The absolute time for the inversion is of course the same for both.

If the time for matrix inversion is excluded from speedup computations for the moment, the speedup

factor reaches 43 (36) on GPU1 (GPU2) according to Diagram 5.7(b). The zigzag shape of the curves

results from extensive padding required for the different kernels. Section 4.3 described the initial-

ization of A and B per k-space segment. If the segment size is a multiple of 16 (half-warp size) we

achieve best performance in terms of memory throughput due to coalesced memory operations in each

half-warp. As there are ∆s = 4 segments of size Ncol/4, we expect best performance for Ncol being a

multiple of 64, which is obviously validated in Diagram 5.6.

87

CHAPTER 5. RESULTS

0 256 512 768 1024 1280
0

10

20

30

40

50

60

N
col

m
em

or
y

th
ro

ug
hp

ut
 [G

B
/s

]

CUDA/CUBLAS

Figure 5.6: Effective Memory Throughput During Initialization of A and B

For multiples of 64 and Ncol ≥ 512, the initialization of A and B reaches an effective memory through-

put in the range of 45 to 56GB/s and hence approximately 60% of the theoretical memory bandwidth.

As already discussed in Section 4.1.3, the number of channels is a limiting factor since it is cubi-

cally involved in the overall computational costs of the autocalibration stage (see Table 4.2). For this

reason, the performance of our GPU-based approach for more than 32 channels is a matter of partic-

ular interest with regard to future MR scanners that will work with arrays of up to 128 coils currently

used in some exploratory systems. The results for varying number of channels and fixed Ncol = 512

are illustrated in Figure 5.7.

The total time of the CPU-based autocallibration reaches almost 20 seconds for the computation of

the reconstruction coefficients for a single (!) slice, which is unacceptable for practical applications

especially as the required time for the remaining reconstruction stages increases in the same manner!

The “inversion problem” is even worse in this case as shown in Diagram 5.7(c). More than 90% of the

overall time of the GPU-accelerated approach is spent on matrix inversion for more than 64 channels.

This is why the effective speedup in Diagram 5.7(b) continuously decreases to four for large Nc.

88

5.3. ENTIRE AUTOCALIBRATION STAGE

0 32 64 96 128
0

2

4

6

8

10

12

14

16

18

20

N
c

tim
e

[s
]

host−based
inversion excluded

CPU1
CPU2
GPU1: CUDA/CUBLAS
GPU2: CUDA/CUBLAS

(a) Overall Time

0 32 64 96 128
0

10

20

30

40

50

60

70

80

N
c

S
pe

ed
up

 C
P

U
/G

P
U

speedup excluding
host−based inversion

effective speedup

GPU1: CUDA
GPU2: CUDA
GPU1: CUBLAS
GPU2: CUBLAS

(b) Speedup

0 32 64 96 128
0

10

20

30

40

50

60

70

80

90

100

N
c

%

CPU1
CPU2
CUDA
CUBLAS

(c) Percentage of Host-Based Inversion

0 32 64 96 128
20

25

30

35

40

45

50

55

60

N
c

m
em

or
y

th
ro

ug
hp

ut
 [G

B
/s

]

CUDA/CUBLAS

(d) Memory Throughput

Figure 5.7: Results for findWs[GPU] Depending on Nc

Excluding the inversion and comparing only parts of the autocalibration that have actually been

mapped to GPU, yields speedups between 50 and 80 for more than 64 channels on GPU1. More-

over, the diagram points out that the CUDA version (mmul4, mmul5) performs 15 to 25% better than

the CUBLAS implementation for Nc ≥ 64.

Finally, Diagram 5.7(d) shows that the memory bandwidth is used much better by the initialization

kernel as the number of executed thread blocks similarly increases with the number of channels, which

causes much better occupancy and better latency hiding.

The relative error adds up to 10−4 for the channel and column test run as there are involved sev-

89

CHAPTER 5. RESULTS

eral consecutive matrix multiplications and the numerically ill-conditioned matrix inversion causing

considerable error accumulation. There are even remarkable discrepancies between the results of the

host-based implementation for matrix inversion depending on the compiler.

In the beginning we met problems concerning limitations of device memory as in the proceed-

ing of our algorithm additional memory space is needed to separately store transposed and reordered

matrices, which allows for efficient access patterns in some kernels. The required memory space,

therefore, exceeds the actual size of ACS data, A, and B by far.

We have overcome these difficulties by implementing a smart memory management avoiding redun-

dancy whenever possible. As a result, this technique extends the range of possible parameter values

the graphics hardware can cope with. A few configurations and the corresponding GPU memory re-

quirements of findWsGPU are listed in Table 5.2.

Ncol Nc R NACS
r Nb ∆s Memory

1 512 32 4 24 4 128 10.2 MB

2 1024 128 4 24 4 256 81.8 MB

3 1024 64 16 128 8 256 197 MB

4 1024 64 16 256 16 256 298 MB

5 1024 128 8 48 8 256 717 MB

Table 5.2: GPU Memory Requirements of findWsGPU for Different Configurations

5.3.2 Integrated Autocalibration

In a final step, we integrated the GPU-powered implementations for the autocalibration stage into

the entire reconstruction pipeline. Siemens Medical Solutions kindly provided practical test data and

corresponding timings for different image reconstruction host systems. The reconstruction pipeline is

part of a complex software system that is currently compiled with Microsoft Visual Studio 6 (MSVC6).

The software and the final application binaries support multi-threaded execution on multi-core pro-

cessors. The following time measurements refer to either single-threaded execution or the time per

(single) core during multi-threaded execution. The autocalibration parameters are chosen as listed in

Table 5.1 except for Ncol = 1024, R = 2, and ∆s = 204.

90

5.3. ENTIRE AUTOCALIBRATION STAGE

8/4 16/8 24/8 32/11
0

200

400

600

800

1000

1200

1400

N
c
 in / out

tim
e

[m
s]

AMD Opteron 252 (2.66GHz)
AMD Opteron 2216 (2.4GHz)
Intel Xeon 5150 (2.66GHz)
Intel Xeon 5440 (2.83GHz)
GPU2: CUBLAS
GPU2: CUDA

(a) Channel Reduction Enabled

8 16 24 32
0

200

400

600

800

1000

1200

1400

N
c

tim
e

[m
s]

AMD Opteron 252 (2.66GHz)
Intel Xeon 5150 (2.66GHz)
GPU2: CUDA
GPU2: CUBLAS

(b) Channel Reduction Disabled

Figure 5.8: Comparison of GPU to CPU for Practical Test Cases

The Intel Xeon 5440 system is equipped with low frequency DRAM, which is the reason for the

worse performance compared to the Intel Xeon 5150 of lower core clock.

Both GPU implementations perform four to nine times faster than the reference CPU implementation.

The Intel Xeon 5150 system corresponds to CPU2 (host system of GPU2) and is the fastest listed

system for all configurations (GPU speedup of four to five). This is worse compared to the situation

in Figure 5.4 for Ncol = 1024 due to the different configuration. First of all, the segment size is no

longer a power of 2 (∆s = 204), which reduces the memory throughput during matrix initialization to

approximately 10 GB/s. Even worse are the matrix dimensions of A and B in this situation according

to Table 4.12: A ∈ C128×3712, B ∈ C32×3712 for Nc = 32 in contrast to the configuration used in Fig-

ure 5.4 (Ncol = 1024): A ∈ C128×3072, B ∈ C96×3072. The time for the inversion of A ·AH ∈ C128×128

remains the same. The computation of the inner products for the matrix multiplications U = B ·AH

and V̂ = A ·AH , however, requires more arithmetic operations. On the other hand, B has fewer rows,

which reduces the number of blocks that are executed for mmul4 to compute U and W = U ·V from

48 down to 16 (64 threads each). In other words, each of the 16 multiprocessor executes exactly one

block but there is no possibility to schedule different blocks for better latency hiding.

The same holds true for the comparison of enabled and disabled channel reduction which affects

only the number of rows in B. In the case Nin
c = 32 and Nout

c = 11 in Diagram 5.8(a), for example, the

2additional padding requirements are missing in Table 4.1

91

CHAPTER 5. RESULTS

number of rows is cut by half from 32 to 16. Therefore, only eight blocks are used for the computation

of U and W , which is much too less to keep all 16 multiprocessors busy. This is the reason why

the overall time GPU2 virtually does not change for disabled channel reduction in Diagram 5.8(b)

in contrast to the CPU timings. The GPU-based implementation can benefit from channel reduction

only for larger values such as Nin
c = 128, Nout

c = 64. Nevertheless, Diagram 5.7(c) shows that the

computation of the inverse of V̂ is the actual bottleneck particularly for large matrices. The time for

inversion itself is unaffected as a smaller number of output channels does not reduce the dimensions

of V̂ . Therefore, there is virtually no noticeable difference between GPU timings in Diagrams 5.9(a)

and 5.9(b) even for 128 input channels.

16/8 32/16 64/32 96/48 128/64
0

5

10

15

20

25

30

35

40

N
c
 in / out

tim
e

[s
]

AMD Opteron 2212 (2.00GHz)
Intel Core2 6700 (2.66GHz)
GPU1: CUDA
GPU1: CUBLAS

(a) Channel Reduction Enabled

16 32 64 96 128
0

5

10

15

20

25

30

35

40

N
c

tim
e

[s
]

Intel Core2 6700 (2.66GHz)
GPU1: CUDA
GPU1: CUBLAS

(b) Channel Reduction Disabled

Figure 5.9: Outlook on Future Number of Channels

5.3.3 Computational Error

According to Diagram 5.3(d) the error for a single matrix multiplication is of magnitude 10−7 to

10−6, which is in accordance to single-precision 32-bit accuracy currently supported by recent graph-

ics hardware. Moreover, we have already mentioned that the relative error of the final reconstruction

weights adds up to 10−4 because of several consecutive matrix multiplications and the numerically

ill-conditioned matrix inversion in particular. The computation of the error metric according to Equa-

tion 5.1 is based on reference data obtained from the CPU-based autocalibration algorithm that is

92

5.3. ENTIRE AUTOCALIBRATION STAGE

compiled with enabled /fp:precise flag for precise arithmetic and higher accuracy. The relative er-

ror decreases by approximately one order of magnitude if fast FP arithmetic is used (/fp:fast) to

compute reference data.

We also compared the results of 191 test cases each containing a set of 12-bit greyscale slice

images to examine the impact of the “inaccurate” reconstruction weights on final reconstructed MR

images. The reference images are generated by the original MSVC6-compiled reconstruction pipeline

of Siemens Medical Solutions. We encountered relative errors up to 10−2 that are caused by the

disparate behavior of the inversion algorithms compiled with MSVC6 respectively MSVC8 even for

the same input. In spite of the relative deviation up to 10−2 there are no visible differences in the vast

majority of reconstructed images as most of the pixels differ by only one or two bit compared to the

12-bit reference images. In the cases of higher deviations we observed localized pixel differences that

have been rated by experts as noncritical and sometimes as even “better” than the reference image.

Finally, we combined our GPU-powered algorithms for autocalibration with the GPU-accelerated

implementation for efficient k-space reconstruction presented in [20]. The reconstruction algorithm

itself only leads to an error in the range of 10−5 to 10−6 if reference reconstruction weights are used

as input. Therefore, the combination of both algorithms generated virtually the same images as the

CPU-based reconstruction did using the GPU-accelerated autocalibration library.

93

CHAPTER 5. RESULTS

94

Chapter 6

Conclusion

6.1 Summary

The first part of this thesis provided an overview of MRI and explained how the acquisition time can

be reduced by parallel imaging techniques such as GRAPPA. GRAPPA in a nutshell: undersample k-

space and reconstruct missing information by fitting acquired data to k-space gaps. The reconstruction

of missing data is a computationally intensive task and basically consists of two stages: The compu-

tation of the fitting coefficients in an initial autocalibration stage and the actual reconstruction of the

missing data. These two processes account for approximately 50% of the overall computation time

required for the entire image reconstruction assuming current parameter configurations. For a large

number of input channels (Nc ≥ 128) this portion even amounts more than 80%. Obviously, k-space

reconstruction is the bottleneck particularly for future configurations.

The second part described the massively parallel and specialized architecture of graphics hardware

and how to effectively harness its computational power to accelerate general-purpose computations.

Moreover, we outlined the Compute Unified Device Architecture along with the uniform shader model

of most recent NVIDIA graphics cards allowing for programming specialized hardware on an abstract

layer.

The final part presented different CUDA kernels for complex-valued matrix multiplication on

GPU and explained various optimization techniques that have been applied step-by-step yielding

speedups of 12 through 18 for special cases compared to the highly optimized Intel MKL. We used

95

CHAPTER 6. CONCLUSION

the optimized kernels to speed up the GRAPPA autocalibration stage as the involved matrix multi-

plications usually make up more than 80% on a CPU. The parts that have been mapped to graphics

hardware1 perform 30 to 45 times faster for current configurations and up to 80 times faster with

regard to future parameter values (Nc = 128). The computation of the inverse is still executed on the

host, which is the new bottleneck. All in all, the GPU-accelerated implementation is 5 up to 18 times

faster than the CPU-based GRAPPA autocalibration and now only makes up two to three percent of

the overall reconstruction time.

6.2 Future Work

As we have already mentioned several times, the host-based matrix inversion turns out to be the new

bottleneck of the optimized GPU implementation since 75% to 95% of the overall time is spent on

computing the inverse of V̂ = AAH . As long as it is executed on CPU, every attempt to further im-

prove the kernels for matrix multiplication is practically useless, e.g. optimization for small matrices

according to [62]. This is why we should concentrate on translating this task to GPU in a next step for

further improvements. Speedup factors for matrix inversion are most likely much lower compared to

those of matrix multiplication as this problem is hard to parallelize particularly because of restricted

communication and synchronization possibilities in CUDA as described in Section 5.2. Moreover, we

could run into serious accuracy problems as the inversion is numerically ill-conditioned. It remains

to be seen if 32-bit single-precision is enough. Luckily, GPUs with support for double-precision are

announced for 2008.

We have also shown that the GPU implementation of the autocalibration stage can easily be com-

bined with the GPU-accelerated GRAPPA reconstruction [20]. The fitting coefficients are computed

per k-space segment, however, but not for each column as required by the k-space reconstruction stage.

Therefore, the weights are linearly interpolated on CPU in the current implementation. As the texture

stage allows for efficient coefficient interpolation on graphics hardware, the intermediate transfer of

the reconstruction weights from device to host and back could be saved.

In terms of memory requirements, it is even better to interpolate the weights on-the-fly, i.e. interpo-

1whole autocalibration stage except matrix inversion

96

6.3. FINAL REMARKS ON CUDA

late coefficients during k-space reconstruction at the time they are needed. If we assume the default

parameters in Table 5.1 for example a single coefficient matrix requires 96 kB of global memory.

The autocalibration stage computes one matrix of this kind for each of the four k-space segments,

i.e. 384 kB of global memory. The interpolated weights for each column, however, need ∆s times the

amount, i.e. 48 MB. This discrepancy gets even worse for more channels and larger images (same

example but Nc = 128 and Ncol = 1024: 6 MB vs. 1.5 GB).

Data transfer between host and device carries more and more weight particularly for future GRAPPA

parameters. Luckily, CUDA provides special routines for allocation of page-locked host memory that

halves the transfer time. Moreover, pinned memory allows for streamed asynchronous memory trans-

fers to hide transfer times by double buffering since CUDA 1.1 [61]. We could not benefit from

page-locked memory in our integrated GPU implementation as the application framework has an own

embedded management system for host memory.

Another possibility for further acceleration of the GRAPPA algorithm is the final inverse Fourier

transform of the reconstructed k-space especially since NVIDIA provides efficient implementations

of the according routines included in the easy-to-use CUFFT library [57].

6.3 Final Remarks on CUDA

CUDA allows for programming highly specialized graphics hardware of remarkable computational

power on an abstract layer without expert knowledge of graphics APIs such as OpenGL. Basic knowl-

edge of C-programming and the few CUDA extensions to the ANSI C standard are enough for a start

to implement own kernels. As demonstrated in Sections 4.2.1 and 5.1 even basic approaches without

elaborate optimizations achieve remarkable results. Furthermore, the higher-level libraries CUBLAS

and CUFFT provide optimized and easy to use routines for different tasks and will probably be further

improved in future releases.

It is quite simple to integrate CUDA routines into complex software systems to leverage the com-

putational power of graphics cards even if it is hardly possible to achieve the entire theoretical peak

performance and memory bandwidth. The gain of performance highly depends on the respective prob-

lem particularly with regard to parallelizability, arithmetic intensity, as well as memory requirements.

97

CHAPTER 6. CONCLUSION

On the other hand, it became clear that detailed knowledge of the CUDA execution model, the

nvcc compiler, and the underlying hardware is still required for elaborate optimization techniques.

Optimizing CUDA kernels is a science in its own right. NVIDIA provides the occupancy calcula-

tor [58] and the CUDA Visual Profiler [64] for this purpose. The capabilities of these tools are quite

limited, though. As there are many influencing factors it is quite hard to optimize kernels analytically.

This is why experimental optimization and tedious trial-and-error methods often successfully reach

the goal more quickly. In some cases, just tiny changes of source code unexpectedly have an impact

on runtime.

Another drawback is the limited support for debugging CUDA kernels, which is only possible in de-

vice emulation mode up to now. Trouble-shooting may become a quite cumbersome task as not all

phenomenons of concurrency showing up during execution on the device itself can be emulated prop-

erly.

Anyhow,

CUDA pushes “The Democratization of Parallel Computing” and brings it to the masses [43].

98

Acknowledgements

I would like to thank Prof. Dr. Günther Greiner and Quirin Meyer for their kind supervision of this

thesis at the Chair for Computer Graphics, Department of Computer Science 9, Friedrich-Alexander

University of Erlangen-Nuremberg.

Particular thanks also go to Michael Peyerl, Gerald Mattauch, and Dr. Swen Campagna from Siemens

Medical Solutions, Erlangen for kindly providing the GRAPPA source code and for their helpful ad-

vice and assistance with all occurring problems especially during the integration into the complex

application framework.

I would like to particularly thank my friend Robert Grimm for the close collaboration, his fruitful

hints, and discussions. It was a pleasure to work with you.

Last but not least, I would like to thank all people that reviewed this thesis, namely my father Klaus,

my brother Thomas, and my friend Birgit Stiller – I really enjoyed reading your comments!

Thank you.

99

Acknowledgements

100

Appendices

101

Appendix A

Notation and Preliminaries

A.1 Matrix Structure

We use an abbreviation for matrices of the following form:

M =
[
m(i, j)

]y≤ i<y+∆y

x≤ j<x+∆x
=
[
mi, j

]y≤ i<y+∆y

x≤ j<x+∆x
=

=

m(y,x) m(y,x+1) · · · m(y,x+∆x−1)

m(y+1,x) m(y+1,x+1) · · · m(y+1,x+∆x−1)
...

...
. . .

...

m(y+∆y−1,x) m(y+∆y−1,x+1) · · · m(y+∆y−1,x+∆x−1)

.

The superscript part with counter i after the
[
·
]

operator describes the blocked structure of the ∆y

matrix rows, and accordingly the subscript part with counter j that of the ∆x matrix columns.

A.2 Matrices in Memory

From a mathematical point of view, matrices are two-dimensional data structures (m rows, n columns).

As the memory of a computer is addressed linearly, however, we have to unfold them1. Basically, there

are two ways that are commonly used in practise to linearize dense matrices.

1The same holds true for two-dimensional arrays.

103

APPENDIX A. NOTATION AND PRELIMINARIES

Row-Major Order The matrix rows are linearly aligned one after the other. The element in the i-th

row and j-th column is stored at the linear index position i · n + j. This technique is used in many

programming languages such as C, C++, and CUDA. It is assumed to be used by default.

Column-Major Order This time, the order is turned upside down. The element in the i-th row and

j-th column is stored at the linear index position j ·m + i, now. This order is used, for example, in

Fortran, Matlab, and CUBLAS.

To get rid of the different storage orders, matrices and the corresponding linearized arrays are

treated equally. As shown in table A.1, both are addressed as two dimensional arrays in code snippets

with a separate index for row and column no matter which storage order is used.

Operation Code snippet

Initialization <dataType> M[#rows][#columns]

Access single element element = M[rowIdx,colIdx]

Access column element = M[•,colIdx]
Access row element = M[rowIdx,•]

Table A.1: Accessing Matrices

A.3 Segmented Matrices

In the majority of cases, matrices are divided into tiles in this thesis. Therefore, we introduce a notation

for addressing whole submatrices to avoid tedious index calculations. Given a matrix M ∈Cm×n which

is segmented into blocks of size ∆y×∆x with m/∆y,n/∆x ∈ N, then

M{i, j}∆y
∆x :=

[
m(i ·∆y+ p, j ·∆x+q)

]0≤ p<∆y

0≤q<∆x
.

In other words, M{i, j} is the block of M located at the i th row and j th column within the overlayed

grid of blocks. If one of the block sizes does not matter or both are equal we only specify the relevant

one: M{i, j}∆x or M{i, j}∆y.

104

A.4. IMPLICIT VARIABLES

A.4 Implicit Variables

As described in Section 3.3.3, there is a grid-block-thread hierarchy for the execution of a kernel. Each

thread is well-defined by the grid-index of the associated block along with the thread-index within this

block. During execution, all threads can access their index tags as well as the according dimensions

of grids and blocks provided by the CUDA environment as implicit variables listed in Table A.2.

CUDA identifier Our identifier Description

in
de

x

blockIdx.x bx column of block in grid

blockIdx.y by row of block in grid

threadIdx.x bx column of thread in block

threadIdx.y by row of thread in block

di
m

en
si

on

gridDim.x gdx number of columns in grid

gridDim.y gdy number of rows in grid

blockDim.x bdx number of columns in block

blockDim.y bdy number of rows in block

Table A.2: Index and Dimension Tags for CUDA Threads

105

APPENDIX A. NOTATION AND PRELIMINARIES

106

List of Acronyms

ACS Auto-Calibration Signal

ALU Arithmetic Logic Unit

API Application Programming Interface

ARB OpenGL Architecture Review Board

BLAS Basic Linear Algebra Subprograms

Cg C for Graphics

CPU Central Processing Unit

CT Computed Tomography

CTM Close To The Metal

CUDA Compute Unified Device Architecture

EPI Echo-Planar Imaging

FFT Fast Fourier Transform

FID Free Induction Decay

FLASH Fast Low-Angle Shot

FOV Field of View

FP Floating-Point (Number)

FSE Fast Spin Echo Sequence

GE Gradient Echo

GLSL OpenGL Shading Language

GPGPU General-Purpose Computing on GPUs

GPU Graphics Processing Unit

GRAPPA Generalized Autocalibrating Partially Parallel Acquisitions

107

APPENDIX A. NOTATION AND PRELIMINARIES

HLSL High Level Shading Language

HPC High-Performance Computing

madd Multiply-Add Instruction

MKL Intel Math Kernel Library

MP Multiprocessor

MRI Magnetic Resonance Imaging

MSVC6 Microsoft Visual Studio 6

MSVC8 Microsoft Visual Studio 8

NMR Nuclear Magnetic Resonance

nvcc NVIDIA C Compiler

PAT Parallel Acquisition Technique

PD Proton Density

PE Phase-Encoding (Direction)

PILS Partially Parallel Imaging with Localized Sensitivities

pMRI Parallel Magnetic Resonance Imaging

PTX Parallel Thread Execution (Code)

RF Radio Frequency

RO Read-Out (Direction)

SART Simultaneous Algebraic Reconstruction Technique

SDK Software Development Kit

SE Spine Echo

SENSE Sensitivity Encoding

SFU Special Function Unit

SIMD Single Instruction, Multiple Data

SMASH Simultaneous Acquisition of Spatial Harmonics

SNR Signal-to-Noise Ratio

SPMD Single Program, Multiple Data

TSE Turbo Spin Echo Sequence

108

List of Symbols

α RF Pulse Flip Angle

χ Regularization Parameter for GRAPPA Autocalibration

∆ω0 Frequency Bandwidth of GS

∆kx Step Size in PE-Direction

∆ky Step Size in RO-Direction

∆s Segment Length

∆z0 Slice Thickness

η Normalization parameter for GRAPPA Autocalibration

γ Gyromagnetic Ratio

κ Parameter for Power Clipping in GRAPPA Autocalibration

λ Normalization Coefficient

ω Larmor Frequency

ρ FOV Image

ρPD Proton Density

τ Time Period Between 90 and 180 Degree Pulse

B Strength of Static Magnetic Field

Ck Sensitivity Map of Coil k

E Identity Matrix

GF Frequency-Encoding Gradient

GP Phase-Encoding Gradient

GS Slice-Selection Gradient

Ik Limited FOV Image of Coil k

109

APPENDIX A. NOTATION AND PRELIMINARIES

KPE Number of Filter Kernel Rows for Improved GRAPPA Autocalibration

KRO Number of Filter Kernel Columns for Improved GRAPPA Autocalibration

kx0 First Column of ACS Segment

ky0 Row Position of First ACS Block

MXY Transverse Magnetization

MZ Longitudinal Magnetization

N t
r Number of Registers Available per Thread

Nmp
b Number of Concurrently Processed Blocks per Multiprocessor

Nmp
r Number of Registers per Multiprocessor on GPU

Nb
t Number of Threads per Block

Nb Number of Blocks in Filter mask for GRAPPA Reconstruction

Nc Number of Coils

NACS
r Number of ACS Lines

Ncol Number of k-space Columns of Each Coil

Nsh Number of Filter Kernel Shifts in RO- and PE-Direction for Improved GRAPPA Auto-

calibration

NPE
sh Number of Filter Kernel Shifts in PE-Direction for Improved GRAPPA Autocalibration

NRO
sh Number of Filter Kernel Shifts in RO-Direction for Improved GRAPPA Autocalibration

NACS
b Number of ACS Blocks

R Acceleration Factor aka Reduction Factor

S MR Signal Intensity

T1 Time Constant of Spin-Lattice Relaxation

T2 Time Constant of Spin-Spin Relaxation

T ∗2 Effective Time Constant of Spin-Spin Relaxation

TE Echo Time

TR Pulse Sequence Repetition Time

w Reconstruction Coefficient

110

Bibliography

[1] Advanced Micro Devices, Inc. ATI CTM Guide, 2006.

http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf.

[2] J. R. Ballinger. MRI tutor - introduction to MRI, March 1997.

http://www.mritutor.org/mritutor/index.html, last accessed 2008/01/12.

[3] M. Blaimer, F. Breuer, M. Müller, R. M. Heidemann, M. A. Griswold, and P. M. Jakob. SMASH,

SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging,

15(4):223–236, Aug 2004.

[4] M. Blaimer, F. A. Breuer, M. Müller, N. Seiberlich, D. Ebel, R. M. Heidemann, M. A. Griswold,

and P. M. Jakob. 2D-GRAPPA-operator for faster 3D parallel MRI. Magnetic Resonance in

Medicine, 56(6):1359–1364, Dec 2006.

[5] M. Blaimer, F. A. Breuer, N. Seiberlich, M. F. Müller, R. M. Heidemann, V. Jellus, G. Wiggins,

L. L. Wald, M. A. Griswold, and P. M. Jakob. Accelerated volumetric MRI with a SENSE/-

GRAPPA combination. J Magn Reson Imaging, 24(2):444–450, Aug 2006.

[6] F. Bloch, W. W. Hansen, and M. Packard. Nuclear induction. Phys. Rev., 69(3-4):127, Feb 1946.

[7] F. Bloch, W. W. Hansen, and M. Packard. The nuclear induction experiment. Phys. Rev., 70(7-

8):474–485, Oct 1946.

[8] F. Breit. Magnetresonanztomographie - Was ist das eigentlich? In Newsletter der FGF e.V.,

pages 19–25. Forschungsgemeinschaft Funk e.V., April 2006.

111

http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://www.mritutor.org/mritutor/index.html

Bibliography

[9] F. Breuer. Development and Application of Efficient Strategies for Parallel Magnetic Resonance

Imaging. PhD thesis, Julius-Maximilians-Universität Würzburg, Dec 2006.

[10] F. A. Breuer, P. Kellman, M. A. Griswold, and P. M. Jakob. Dynamic autocalibrated parallel

imaging using temporal GRAPPA (TGRAPPA). Magnetic Resonance in Medicine, 53(4):981–

985, 2005.

[11] I. Buck and T. Foley. BrookGPU. Stanford University Graphics Lab, 2003.

http://graphics.stanford.edu/projects/brookgpu/, last accessed 2008/02/07.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook for

GPUs: stream computing on graphics hardware. ACM Trans. Graph., 23(3):777–786, 2004.

[13] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic reconstruction

using texture mapping hardware. In VVS ’94: Proceedings of the 1994 symposium on Volume

visualization, pages 91–98, New York, NY, USA, 1994. ACM.

[14] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-

Hill Higher Education, 2001.

[15] T. C. Farrar and E. D. Becker. Pulse and Fourier Transform NMR: Introduction to Theory and

Methods. Academic Press, 1971.

[16] D. Göddeke. GPGPU::basic math tutorial, 2005.

http://www.mathematik.uni-dortmund.de/˜goeddeke/gpgpu/tutorial.html,

last accessed 2008/01/10.

[17] G. H. Golub and C. F. V. Loan. Matrix computations. Johns Hopkins University Press, Baltimore,

MD, USA, 3rd edition, 1996.

[18] T. A. Gould. How MRI works, 2003.

http://www.howstuffworks.com/mri.htm, last accessed 2007/12/30.

[19] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Computing. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2003.

112

http://graphics.stanford.edu/projects/brookgpu/
http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html
http://www.howstuffworks.com/mri.htm

Bibliography

[20] R. Grimm. GPU-accelerated GRAPPA reconstruction in magnetic resonance imaging. Master

thesis, Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Computer Science 9

(Computer Graphics), March 2008.

[21] M. A. Griswold, M. Blaimer, F. Breuer, R. M. Heidemann, M. Müller, and P. M. Jakob. Parallel

magnetic resonance imaging using the GRAPPA operator formalism. Magnetic Resonance in

Medicine, 54(6):1553–1556, Dec 2005.

[22] M. A. Griswold, P. M. Jakob, R. M. Heidemann, and M. Nittka. Generalized autocalibrating

partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47:1202–1210,

2002.

[23] M. A. Griswold, P. M. Jakob, M. Nittka, J. W. Goldfarb, and A. Haase. Partially parallel imaging

with localized sensitivities (PILS). Magnetic Resonance in Medicine, 44(4):602–609, 2000.

[24] M. Harris. General-purpose computation using graphics hardware, Nov 2002.

http://www.gpgpu.org/, last accessed 2008/03/23.

[25] M. Harris. Tutorial S05: High performance computing on GPUs with CUDA, Session 05: Opti-

mizing CUDA. In Supercomputing 2007. NVIDIA Research, 2007.

http://www.gpgpu.org/sc2007/SC07_CUDA_5_Optimization_Harris.pdf.

[26] R. M. Heidemann, M. A. Griswold, A. Haase, and P. M. Jakob. VD-AUTO-SMASH imaging.

Magnetic Resonance in Medicine, 45(6):1066–1074, 2001.

[27] R. M. Heidemann, M. A. Griswold, M. Müller, F. Breuer, M. Blaimer, B. Kiefer, M. Schmitt,

and P. M. Jakob. Möglichkeiten und Grenzen der parallelen MRT im Hochfeld. Radiologe,

44(1):49–55, January 2004. Feasibilities and limitations of high field parallel MRI.

[28] R. M. Heidemann, O. Ozsarlak, P. M. Parizel, J. Michiels, B. Kiefer, V. Jellus, M. Müller,

F. Breuer, M. Blaimer, M. A. Griswold, and P. M. Jakob. A brief review of parallel magnetic

resonance imaging. Eur Radiol, 13(10):2323–2337, Oct 2003.

[29] A. Hendrix. Magnets, Spins and Resonances. Siemens AG Medical Solutions, Magnetic Reso-

nance, 2003.

113

http://www.gpgpu.org/
http://www.gpgpu.org/sc2007/SC07_CUDA_5_Optimization_Harris.pdf

Bibliography

[30] D. Hoa and A. Micheau. e-MRI, magnetic resonance imaging physics and technique course on

the web. Campus Medica, 2007.

http://www.e-mri.org/, last accessed 2008/01/12.

[31] W. Hoge and D. Brooks. On the complimentarity of SENSE and GRAPPA in parallel MR imag-

ing. In D. Brooks, editor, Proc. 28th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society EMBS ’06, pages 755–758, 2006.

[32] J. Hornak. The basics of MRI, May 1996.

http://www.cis.rit.edu/htbooks/mri/, last accessed 2008/01/05.

[33] M. Houston. Tutorial S07: GPGPU: General-purpose computing on graphics hardware, Session

07: High level languages for GPUs. In Supercomputing 2006. Stanford University, 2006.

http://www.gpgpu.org/sc2006/slides/07.houston-high-level-languages.pdf.

[34] F. Huang, J. Akao, S. Vijayakumar, G. R. Duensing, and M. Limkeman. k-t GRAPPA: A k-space

implementation for dynamic MRI with high reduction factor. Magnetic Resonance in Medicine,

54(5):1172–1184, 2005.

[35] D. Huo, D. Huo, and D. Wilson. Robust GRAPPA reconstruction. In D. Wilson, editor, Proc.

3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pages 37–40, 2006.

[36] Intel Corporation. Intel C++ compiler for linux, 2008.

http://www.intel.com/support/performancetools/c/linux/, last accessed 2008/03/02.

[37] Intel Corporation. Intel math kernel library 10.0, 2008.

http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm, last accessed

2008/03/02.

[38] Intel Corporation. PCI express x16 graphics interface, 2008.

http://www.intel.com/design/chipsets/pciexpress.htm, last accessed 2008/02/11.

[39] P. Jakob, M. Grisowld, R. Edelman, and D. Sodickson. AUTO-SMASH: A self-calibrating tech-

nique for SMASH imaging. Magnetic Resonance Materials in Physics, Biology and Medicine,

7(1):42–54, Nov 1998.

114

http://www.e-mri.org/
http://www.cis.rit.edu/htbooks/mri/
http://www.gpgpu.org/sc2006/slides/07.houston-high-level-languages.pdf
http://www.intel.com/support/performancetools/c/linux/
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/design/chipsets/pciexpress.htm

Bibliography

[40] M. Jiang and G. Wang. Convergence studies on iterative algorithms for image reconstruction.

IEEE Trans. Med. Imaging, 22(5):569–579, 2003.

[41] A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging. Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, USA, 2001.

http://www.slaney.org/pct/, last accessed 2008/03/05.

[42] W. E. Kyriakos, L. P. Panych, D. F. Kacher, C.-F. Westin, S. M. Bao, R. V. Mulkern, and F. A.

Jolesz. Sensitivity profiles from an array of coils for encoding and reconstruction in parallel

(space rip). Magnetic Resonance in Medicine, 44(2):301–308, 2000.

[43] D. Lübke. Tutorial S05: High performance computing on GPUs with CUDA, Session 01: The

democratization of parallel computing. In Supercomputing 2007. NVIDIA Research, 2007.

http://www.gpgpu.org/sc2007/SC07_CUDA_1_Introduction_Luebke.pdf.

[44] D. Lübke and G. Humphreys. How GPUs work. Computer, 40(2):96–100, Feb. 2007.

[45] D. Manocha. General-purpose computations using graphics processors. Computer, 38(8):85–88,

Aug 2005.

[46] D. W. McRobbie, E. A. Moore, M. J. Graves, and M. R. Prince. MRI from picture to proton.

Cambridge University Press, January 2003.

[47] Microsoft Corporation. DirectX, 2008.

http://msdn.microsoft.com/directx/, last accessed 2008/02/07.

[48] Microsoft Corporation. Microsoft research accelerator project, 2008.

http://research.microsoft.com/research/downloads/Details/

25e1bea3-142e-4694-bde5-f0d44f9d8709/Details.aspx, last accessed 2008/02/07.

[49] H. Morneburg, editor. Bildgebende Systeme für die medizinische Diagnostik. Publicis MCD, Er-

langen, 3rd edition, 1995. Röntgendiagnostik und Angiographie, Computertomographie, Nuk-

learmedizin, Magnetresonanztomographie, Sonographie, integrierte Informationssysteme.

[50] K. Müller, F. Xu, and N. Neophytou. Why do commodity graphics hardware boards (GPUs)

work so well for acceleration of computed tomography? SPIE Electronic Imaging, 2007.

115

http://www.slaney.org/pct/
http://www.gpgpu.org/sc2007/SC07_CUDA_1_Introduction_Luebke.pdf
http://msdn.microsoft.com/directx/
http://research.microsoft.com/research/downloads/Details/25e1bea3-142e-4694-bde5-f0d44f9d8709/Details.aspx
http://research.microsoft.com/research/downloads/Details/25e1bea3-142e-4694-bde5-f0d44f9d8709/Details.aspx

Bibliography

[51] K. Müller and R. Yagel. Rapid 3-D cone-beam reconstruction with the simultaneous algebraic

reconstruction technique (SART) using 2-D texture mapping hardware. Medical Imaging, IEEE

Transactions on, 19(12):1227–1237, Dec 2000.

[52] Nobel Web AB. The nobel prize in physics 1952, 2008.

http://nobelprize.org/nobel_prizes/physics/laureates/1952/,

last accessed 2007/12/30.

[53] Nobel Web AB. The nobel prize in physiology or medicine 2003, 2008.

http://nobelprize.org/nobel_prizes/medicine/laureates/2003/,

last accessed 2007/12/30.

[54] NVIDIA Corporation. Cg, 2003.

http://developer.nvidia.com/page/cg_main.html, last accessed 2008/02/07.

[55] NVIDIA Corporation. The CUDA Compiler Driver NVCC, 1.1 edition, Octiber 2007.

http://www.nvidia.com/object/cuda_get.htm, last accessed 2008/02/12.

[56] NVIDIA Corporation. CUDA CUBLAS Library, version 1.1 edition, September 2007.

http://developer.download.nvidia.com/compute/cuda/1_1/CUBLAS_Library_1.1.

pdf.

[57] NVIDIA Corporation. CUDA CUFFT Library, version 1.1 edition, October 2007.

http://developer.download.nvidia.com/compute/cuda/1_1/CUFFT_Library_1.1.

pdf.

[58] NVIDIA Corporation. CUDA GPU Occupancy Calculator, 2007.

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_

calculator.xls.

[59] NVIDIA Corporation. GPU Gems 3. Addison-Wesley Professional, August 2007.

[60] NVIDIA Corporation. NVIDIA CUDA - PTX: Parallel Thread Execution, ISA version 1.1 edi-

tion, October 2007.

http://www.nvidia.com/object/cuda_get.htm, last accessed 2008/02/11.

116

http://nobelprize.org/nobel_prizes/physics/laureates/1952/
http://nobelprize.org/nobel_prizes/medicine/laureates/2003/
http://developer.nvidia.com/page/cg_main.html
http://www.nvidia.com/object/cuda_get.htm
http://developer.download.nvidia.com/compute/cuda/1_1/CUBLAS_Library_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/CUBLAS_Library_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/CUFFT_Library_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/CUFFT_Library_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.nvidia.com/object/cuda_get.htm

Bibliography

[61] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture - Programming

Guide, version 1.1 edition, November 2007.

http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_

Programming_Guide_1.1.pdf.

[62] NVIDIA Corporation. CUBLAS and CUFFT sources, February 2008.

http://forums.nvidia.com/index.php?showtopic=59101.

[63] NVIDIA Corporation. CUDA zone, 2008.

http://www.nvidia.com/object/cuda_home.html, last accessed 2008/02/07.

[64] NVIDIA Corporation. NVIDIA CUDA visual profiler, version 0.1 beta, February 2008.

http://forums.nvidia.com/index.php?showtopic=57443, last accessed 2008/02/11.

[65] OpenGL.org. OpenGL - the industry’s foundation for high performance graphics, 1997.

http://www.opengl.org, last accessed 2008/02/07.

[66] OpenMP Architecture Review Board. The OpenMP specification for parallel programming,

2007.

http://www.openmp.org/, last accessed 2008/03/02.

[67] J. D. Owens, D. Lübke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell.

A survey of general-purpose computation on graphics hardware. Computer Graphics Forum,

26(1):80–113, 2007.

[68] V. Pande. Folding@Home - distributed computing, 2007.

http://folding.stanford.edu/, last accessed 2008/02/12.

[69] W. Pauli. Exclusion principle and quantum mechanics - nobel lecture, December 13 1946.

http://nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-lecture.

pdf.

[70] K. P. Pruessmann, M. Weiger, P. Boernert, and P. Boesiger. Spiral SENSE: Sensitivity encoding

with arbitrary k-space trajectories. In ISMRM Conference Abstracts, page 94, 1999.

117

http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://forums.nvidia.com/index.php?showtopic=59101
http://www.nvidia.com/object/cuda_home.html
http://forums.nvidia.com/index.php?showtopic=57443
http://www.opengl.org
http://www.openmp.org/
http://folding.stanford.edu/
http://nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-lecture.pdf
http://nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-lecture.pdf

Bibliography

[71] K. P. Prüssmann, M. Weiger, M. B. Scheidegger, and P. Bösiger. SENSE: Sensitivity encoding

for fast MRI. Magnetic Resonance in Medicine, 42(5):952–962, 1999.

[72] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance absorption by nuclear magnetic mo-

ments in a solid. Phys. Rev., 69(1-2):37–38, Jan 1946.

[73] Rapid Mind, Inc. Rapid mind.

http://www.rapidmind.net/, last accessed 2008/02/07.

[74] H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschik, and J. Hornegger. Implementa-

tion of the FDK algorithm for cone-beam CT on the cell broadband engine architecture. Medical

Imaging 2007: Physics of Medical Imaging, 6510(1):651058, 2007.

[75] H. Scherl, H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. Fast GPU-based CT recon-

struction using the common unified device architecture (CUDA). In Nuclear Science Symposium

Conference Record, 2007. NSS ’07. IEEE, volume 6, pages 4464–4466, 2007.

[76] T. Schiwietz, T. Chang, P. Speier, and R. Westermann. MR image reconstruction using the GPU.

In Proceedings of SPIE Medical Imaging 2006, San Diego, CA, February 2006. SPIE.

[77] D. K. Sodickson and W. J. Manning. Simultaneous acquisition of spatial harmonics (SMASH):

Fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine, 38(4):591–603,

1997.

[78] S. Stone, H. Yi, W. mei Hwu, J. Haldar, B. Sutton, and Z.-P. Liang. How GPUs can improve the

quality of magnetic resonance imaging. October 2007. The First Workshop on General Purpose

Processing on Graphics Processing Units (GPGPU), October 2007. Boston, MA.

[79] T. Sumanaweera and D. Liu. Medical image reconstruction with the FFT. In M. Pharr and

R. Fernando, editors, GPU Gems 2: Programming Techniques for High-Performance Graphics

and General-Purpose Computation, pages 765–784, Amsterdam, March 2005. Addison-Wesley

Longman.

118

http://www.rapidmind.net/

Bibliography

[80] J. Wang, T. Kluge, and M. Nittka. Parallel acquisition techniques with modified SENSE recon-

struction mSENSE. In Proceedings of the First international Workshop on parallel MRI basics

and clinical applications, page 398, Würzburg, 2001.

[81] X. Xue, A. Cheryauk, and D. Tubbs. Acceleration of fluoro-CT reconstruction for a mobile

C-Arm on GPU and FPGA hardware: A simulation study. SPIE Medical Imaging, 2006.

[82] C. Zeller and M. Harris. Course 24: General-purpose computation on graphics hardware, Session

09: CUDA performance. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, New York, NY,

USA, 2007. ACM.

http://www.gpgpu.org/s2007/slides/09-CUDA-performance.pdf.

119

http://www.gpgpu.org/s2007/slides/09-CUDA-performance.pdf

Bibliography

120

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebe-

nen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen

Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.

Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeich-

net.

Ich bin damit einverstanden, dass die Arbeit veröffentlicht wird und dass in wissenschaftlichen Veröf-

fentlichungen auf sie Bezug genommen wird.

Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Graphische Datenverarbeitung,

wird ein (nicht ausschließliches) Nutzungsrecht an dieser Arbeit sowie an den im Zusammenhang mit

ihr erstellten Programmen eingeräumt.

Erlangen, den 01. April 2008

Matthias Schneider

	Introduction
	Related Work
	Contributions
	Outline

	Magnetic Resonance Imaging
	Overview and History
	MR Physics
	Fundamentals of Spin Physics
	Precession
	RF Pulses and Resonance Condition
	MR Signal
	Spin Relaxation
	Spin Echo

	Image Reconstruction
	Spacial Allocation and Slices
	Frequency and Phase Encoding
	Pulse Sequence

	Contrast Techniques
	Parallel Acquisition Techniques
	Motivation
	Reconstruction in Image Domain
	Reconstruction in k-space

	The GRAPPA Algorithm in Detail
	Reconstruction of k-space
	Autocalibration
	Further Development

	Imaging Hardware

	General-Purpose Computing on GPUs
	Introduction
	Why GPUs for General-Purpose Computing?
	Limitations and Requirements

	Programmability of GPUs
	Graphics Pipeline
	High-Level Languages

	Compute Unified Device Architecture
	Overview
	Programming Model
	Execution Model
	Memory Model
	Hardware
	Designing Parallel Algorithms
	Performance Aspects

	GPGPU in Practice

	GPGPU for GRAPPA Autocalibration
	Autocalibration Algorithm in Practice
	Basic Approach
	Improved Approach
	Computational Costs and Complexity

	Matrix Multiplication
	Basic Approach
	Improved Kernels
	CUBLAS
	Special case

	Initialization and Normalization
	Initialization
	Normalization

	Entire Autocalibration Stage

	Results
	Matrix Multiplication
	Matrix Inversion
	Entire Autocalibration Stage
	Standalone Autocalibration
	Integrated Autocalibration
	Computational Error

	Conclusion
	Summary
	Future Work
	Final Remarks on CUDA

	Notation and Preliminaries
	Matrix Structure
	Matrices in Memory
	Segmented Matrices
	Implicit Variables

	List of Acronyms
	List of Symbols
	Bibliography

